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Abstract. We perform energy estimates for a sharp-interface model of two-dimensional, two-

phase Darcy flow with surface tension. A proof of well-posedness of the initial value problem
follows from these estimates. In general, the time of existence of these solutions will go to zero as

the surface tension parameter vanishes. We then make two additional estimates, in the case that

a stability condition is satisfied by the initial data: we make an additional energy estimate which
is uniform in the surface tension parameter, and we make an estimate for the difference of two

solutions with different values of the surface tension parameter. These additional estimates allow

the zero surface tension limit to be taken, showing that solutions of the initial value problem in
the absence of surface tension are the limit of solutions of the initial value problem with surface

tension as surface tension vanishes.

1. Introduction

We consider a sharp-interface model of two-phase incompressible fluid flow, in which the fluid
velocities are given by Darcy’s Law. There are two primary settings in which fluid velocities are
modeled by Darcy’s Law: flow in a porous medium, and Hele-Shaw flow (i.e., flow of fluid between
two closely-spaced, parallel sheets of glass) [14], [16]. In the present contribution, we consider the
effect of surface tension at the interface, and we show that if a condition is satisfied by the initial
data, then the flow without surface tension can be recovered by taking the limit as surface tension
vanishes.

The fluids are taken to be two-dimensional and of infinite vertical extent. For simplicity, we
consider periodic boundary conditions in the horizontal direction. In each fluid region, we have the
following expression for the velocity from Darcy’s Law:

vi(x1, x2, t) = −
b2

12νi
∇ (p1(x1, x2, t) + ρigx2) .

Here, the subscript i indicates which fluid region is being described; we let i = 1 indicate the lower
fluid and i = 2 indicate the upper fluid. The point (x1, x2) is taken to be in fluid region i at time
t. The fluid viscosities are denoted by νi, and the fluid densities are denoted by ρi. For each fluid,
pi is the pressure. The constant g is the acceleration due to gravity. Finally, we mention that the
constant b is a physical parameter. When Darcy flow is taken as a model of flow in a porous medium,
b is related to the porosity and permeability of the medium. When Darcy flow instead describes
flow in a Hele-Shaw cell, b is related to the thickness of the gap between the plates of glass.

The case without surface tension is well-posed only if a stability condition is satisfied; if the fluids
had equal densities, or if gravity were not present, then the stability condition would state that
the more viscous fluid must displace the less viscous fluid. For the linearization of the flow, this
condition was introduced by Saffman and Taylor [45]. It was verified in [2] that the initial value
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problem is well-posed if the nonlinear version of the stability condition is satisfied. If the stability
condition is violated, then the problem is known to be ill-posed [40], [46].

Many authors have considered the well-posedness of interfacial Darcy flow problems previously,
both at short times and for all time. Furthermore, studies include the two-dimensional and three-
dimensional cases, the cases with and without surface tension, and the case of a single fluid and the
case of two fluids. The case with two fluids and without surface tension is sometimes known as the
Muskat or Muskat-Leibenzon problem. The Muskat problem is relevant to the current study, because
when we show that we are able to take the limit as surface tension vanishes, we will in the end have
a new proof of existence of solutions for the Muskat problem for short times. Some papers which
treat the well-posedness question are the work of Bailly, in which the short-time well-posedness is
established in both two and three dimensions, and the papers of Yi, in which the two-dimensional
Muskat problem is shown to be well-posed for short times and for all time (with a smallness condition
for the global result) [12], [54], [55]. Another recent proof of existence of global, small-data solutions
for the Muskat problem is [21]. Aside from the Muskat problem, for the one-phase problem or the
problem with fixed, positive surface tension, solutions have been shown to exist in papers by Duchon
and Robert, Constantin and Pugh, Escher and Simonett, Kim, and Xie [20], [27], [29], [30], [31],
[41], [51].

Another paper proving existence of solutions for the Muskat problem is [25]. In this paper, the
authors prove existence of solutions in 2D, and a novel feature is how they treat the self-intersection
condition for the interface. In order to prove that classical solutions for the free-surface problem
exist, it is necessary to preclude self-intersections of the interface. This is typically done by ensuring
that a chord-arc condition is satisfied by the solution at all times; the chord-arc condition was used,
for instance, in the landmark papers of Wu proving well-posedness of the irrotational water wave
problem in two and three spatial dimensions [49], [50]. This condition can be enforced by either
“hard” or “soft” means, i.e., by either establishing estimates, or by using theorems of functional
analysis. Cordoba et al., in the paper [25] as well as in other papers such as [22] and [23], choose
a “hard” solution to this issue, proving an estimate for the time evolution of the L∞-norm of the
chord-arc quantity. We choose instead what is primarily a “soft” solution to the issue, relying on
a careful use of the Picard theorem to ensure that interfaces we consider stay well away from self-
intersections. Similarly, when studying flows for which the stability condition is satisfied, since the
related quantity is time-dependent, we again have a choice between “hard” and “soft” methods.
Cordoba et al. choose a “hard” approach, making estimates of the growth of the relevant quantity,
while we choose a “soft” approach, again relying primarily upon the Picard theorem.

All of the above papers either considered the case with surface tension or the case without surface
tension; we instead consider now the relationship between the two cases. This has been done
previously for other fluids problems. The author and Masmoudi have previously shown that the
zero surface tension limit of water waves can be taken [5], [7]. For compressible free-boundary Euler
flow in three spatial dimensions, Coutand, Hole, and Shkoller have recently shown that the zero
surface tension limit can be taken [26], and Hadzic and Shkoller have shown that the zero surface
tension limit can be taken for the Stefan problem [34]. As in the present work, the essential element
of these proofs is an estimate for the problem which is uniform in the surface tension parameter.

Also, for the case of Darcy flow, the zero surface tension limit has been studied in some cases.
Siegel, Tanveer, and Dai studied the zero surface tension limit of Hele-Shaw flow in the unstable case
[47], [48]. In this setting, the initial value problem is ill-posed, but some smooth solutions are known
to exist. Given a smooth solution of the problem without surface tension, Siegel, Tanveer, and Dai
use the solution at time zero as the initial condition for the problem with surface tension, and then
study the limit of these solutions as surface tension vanishes. They find that the effect of surface
tension is singular, in that the limit as surface tension vanishes is not the solution without surface
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tension with which they began the process. The present result is complementary, in that we study
a different case (in which the initial data satisfies the stability condition), and reach the opposite
conclusion. Ceniceros and Hou have made additional studies of the unstable case, confirming that
the zero surface tension limit is indeed singular [17], [18].

We formulate the evolution equations by following the approach of Hou, Lowengrub, and Shelley
(HLS). In [38] and [37], they developed and implemented a non-stiff numerical method for the
solution of the initial value problem for two-dimensional interfacial Darcy flow and vortex sheets
with surface tension. The formulation involves describing the location of the free surface by using
the tangent angle that the interface forms with the horizontal and the arclength element of the curve,
rather than the Cartesian coordinates. Furthermore, an artificial tangential velocity is used in order
to enforce a normalized arclength parameterization, rather than using, for instance, a Lagrangian
parameterization. While these ideas were introduced for the purpose of removing the stiffness from
numerical methods, they have since found much use in analysis as well, for instance, in the papers
[1], [2], [5], [33], [19], [23], [25], [28], [52], and [53]. Although the current contribution addresses only
the case of fluids in two spatial dimensions, we mention that the HLS ideas have also been extended
now to three-dimensional flows, both numerically [43], [39], [8], [9], and analytically [3], [6], [7], [24].

In the HLS formulation, we write the evolution equations by isolating the leading-order terms,
i.e., the terms with the most derivatives. We also are careful to indicate which terms in the evolution
equation are present only because of the surface tension force, as opposed to terms which are present
in any case. These considerations lead to an extensive effort to rewrite the evolution equations. We
then introduce mollifiers into the evolution equations, so that we may use the Picard theorem
for ordinary differential equations on a Banach space to prove the existence of solutions. Energy
estimates are then performed, without assuming the stability condition is satisfied by the initial
data. It is found that the growth of the norm of the solutions to the mollified equations can be
bounded, uniformly in the mollification parameter. With this uniform control in hand, it is then
possible to prove the existence of solutions for the original, non-mollified initial value problem by
sending the mollification parameter to zero. Additional, similar energy estimates then imply that
the solutions are unique and depend continuously on the initial data.

We then turn to the case in which the stability condition is satisfied by the initial data. In this
case, we are able to repeat the energy estimates, this time finding additionally that the estimates can
also be made uniformly with respect to the surface tension parameter. This additional uniformity
allows the limit to be taken as surface tension vanishes. The vanishing surface tension limit of
interfacial Darcy flow with surface tension is thus found to be the interfacial Darcy flow without
surface tension.

While we have attempted to discuss the most relevant references above, it surely is not possible
to survey all of the prior literature on Hele-Shaw flows. We refer the reader to the bibliography
developed by Gillow and Howison, with over 600 references [32].

The remainder of this paper is organized as follows. In Section 2, we give a helpful model problem,
which demonstrates the spirit of the different energy estimates we will make for our physical problem.
In Section 3, we present the equations of motion for two-dimensional interfacial Darcy flow. In
Section 4, we develop a variety of estimates which will be useful many times. In Section 5, we prove
well-posedness of two-dimensional interfacial Darcy flow for a fixed, positive value of the surface
tension coefficient, with no assumption of the stability condition. Then, in Section 6, we show that
when the stability condition is satisfied by the initial data, the limit can be taken as surface tension
vanishes, and the limiting flow is the interfacial Darcy flow without surface tension. Finally, we
make some concluding remarks in Section 7.

The author is grateful to Michael Siegel for helpful conversations.
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2. An instructive example

Let τ ≥ 0 be a constant, let c1 ≥ 0 be a constant, and let c2 be a constant. Consider the linear
equation

(1) ut = −τΛ3(u) + c1τΛ2(u) + c2Λ(u),

where Λ is the operator with symbol Λ̂ = ∣k∣. (Note that now and in the remainder of the paper,
subscripts of the spatial or temporal variable imply differentiation, as ut here indicates ∂u/∂t.) We
take the equation with spatially periodic boundary conditions, and with initial data u(x,0) = u0(x).
Let u(x, t) be the solution; note that the solution can easily be written down by using the Fourier
series. Let s > 0 be an integer; below, we will estimate the Hs norm of the solution. Note that the
leading-order term in the evolution equation (i.e., the term with Λ3) offers parabolic smoothing when
τ > 0. In that case, the next-order term (i.e., the term with Λ2) is, however, a backwards parabolic
term, since τc1 ≥ 0. The lowest order term is either a forward parabolic term or a backward parabolic
term, depending on the sign of c2. For τ > 0, the problem is well-posed, since the leading-order term
makes the entire problem a forward parabolic problem, regardless of the sign of c2. If c2 > 0, however,
we will need to use the leading-order term to control the lowest-order term, and then the estimates
will depend badly on τ ; solutions will blow up as τ goes to zero. On the other hand, if c2 ≤ 0, then
the estimates can be made uniformly in τ, and the limit of the solutions could be taken as τ goes
to zero. Furthermore, we mention that with c2 ≤ 0, the initial value problem is well-posed in the
case τ = 0, and an estimate for the solution could be made in this case in its own right, without
considering the limit τ → 0+.

We demonstrate these estimates, defining the energy to be

(2) E(t) = 1
2 ∫X

u2(x, t) + (∂sxu(x, t))2 dx,

where X is the spatial domain (a periodic interval). Clearly, this energy is equivalent to the square
of the usual Hs norm of the solution.
Case 1: We start with the simplest case, τ = 0 and c2 ≤ 0. Then, it is elementary that

dE

dt
= c2 ∫

X
(Λ1/2(u))

2
+ (∂sxΛ1/2(u))

2
dx ≤ 0.

Notice that in addition to showing that solutions are bounded in Hs, if c2 < 0, this estimate can also
be used to show that solutions gain derivatives at positive times.
Case 2: The next case that we consider is τ > 0 and c2 ≤ 0. We still use (2), so we have

(3)
dE

dt
= τ

⎡⎢⎢⎢⎢⎣
∫
X
− (Λ3/2(u))

2
− (∂sxΛ3/2(u))

2
+ c1 (Λ(u))2 + c1 (∂sxΛ(u))2

dx

⎤⎥⎥⎥⎥⎦
+ c2 ∫

X
(Λ1/2(u))

2
+ (∂sxΛ1/2(u))

2
dx.

We estimate this by again using c2 ≤ 0, and we also notice that (Λ(u))2 can be controlled by the
energy, since s is at least one:

dE

dt
≤ CτE + τ

⎡⎢⎢⎢⎢⎣
∫
X
− (∂sxΛ3/2(u))

2
+ c1(∂sxΛ(u))2 dx

⎤⎥⎥⎥⎥⎦
.

We let v = ∂sxu, and we use the Plancherel theorem to rewrite the remaining integral as a sum:

dE

dt
≤ CτE + τ

⎡⎢⎢⎢⎢⎣

∞

∑
k=−∞

(−∣k∣3 + c1k2) ∣v̂∣2(k)
⎤⎥⎥⎥⎥⎦
.



THE ZERO SURFACE TENSION LIMIT OF 2D DARCY FLOW 5

Since c1 is constant, there exists C̄ such that for all k, we have −∣k∣3 + c1k2 ≤ C̄. Also, notice that
∑ ∣v̂∣2(k) ≤ 2E. We therefore conclude that there exists a constant C̃ such that

dE

dt
≤ C̃τE,

so we may conclude that for any t,

E(t) ≤ E(0)eC̃τt.
Clearly, as τ → 0+, this bound on the Hs norm of u is uniform with respect to τ.
Case 3: We now consider our final case, τ > 0 and c2 > 0. We begin from (3), and we begin
by estimating the terms c1(Λ(u))2 and c2(Λ1/2(u))2 by the energy, and by using the inequality
−(Λ3/2(u))2 ≤ 0 ∶

dE

dt
≤ CτE + τ

⎡⎢⎢⎢⎢⎣
∫
X
− (∂sxΛ3/2(u))

2
+ c1 (∂sxΛ(u))2

dx

⎤⎥⎥⎥⎥⎦
+ c2 ∫

X
(∂sxΛ1/2(u))

2
dx.

We again use the Plancherel theorem, and we again denote v = ∂sxu ∶

dE

dt
≤ CτE +

∞

∑
k=−∞

( − τ ∣k∣3 + c1τk2 + c2∣k∣)∣v̂(k)∣2.

For fixed τ > 0, we can treat this as we did previously. That is, there exists a constant C̄ = C̄(τ)
such that for all k,

−τ ∣k∣3 + c1τk2 + c2∣k∣ ≤ C̄(τ),
so that

dE

dt
≤ (Cτ + C̄(τ))E,

and thus
E(t) ≤ E(0) exp{(Cτ + C̄(τ))t} .

This estimate is not uniform in τ, however, since it is evident that lim
τ→0+

C̄(τ) = +∞.

Remark 1. In Case 3, it is not only true that we are unable to prove that there is a limit as τ → 0+,
but also that for many pieces of initial data, we can see that the limit definitely fails to exist. For
example, say the initial data is given by û0(k) = 1/∣k∣100, for k ≠ 0. Then, u0 is in Hs for many
reasonable choices of s, and the solution u(⋅, t) will also be in Hs at positive times, for any fixed,
positive value of τ. An explicit calculation of the solution, however, shows that the solutions blow
up in Hs as τ → 0+, for any t > 0.

Remark 2. After specifying the evolution equations for the interfacial Darcy flow in Section 3
below, a substantial effort will be made to rewrite the equations in order to make them as similar
as possible to (1). The ultimate goal of this effort is to arrive at formula (58) below, in which θεαα
plays the role of u (the variables θ and α will be defined in Section 3, and ε will be introduced in
Section 5).

3. The equations of motion

In this section, we present the exact equations of motion for the physical problem being studied,
two-dimensional interfacial Darcy flow with surface tension. In Figure 1, we show a simple schematic
of the situation; the two fluids are separated by a sharp interface, are horizontally periodic, and are
infinitely deep.



6 DAVID M. AMBROSE

Figure 1. A simple schematic of the geometry under consideration. The two fluids
are separated by a sharp interface, which is periodic in the horizontal direction. The
fluids are of infinite vertical extent.

The location of the interface is given by the parameterized curve (x(α, t), y(α, t)), where t is time
and α is the spatial parameter. This curve is 2π-periodic in the horizontal direction, meaning that
for all α and t, we have

x(α + 2π, t) = x(α, t) + 2π, y(α + 2π, t) = y(α, t).

We define the arclength element sα(α, t) = (x2
α(α, t) + y2

α(α, t))
1/2

. We use the following unit tangent
and normal vectors:

t̂ = (xα, yα)
sα

, n̂ = (−yα, xα)
sα

.

It is also useful to introduce the tangent angle formed between the curve and the horizontal,

θ(α, t) = arctan( yα(α, t)
xα(α, t)

) .

We can express t̂ and n̂ easily in terms of θ ∶

t̂ = (cos(θ), sin(θ)), n̂ = (− sin(θ), cos(θ)).

From this formula follows a version of the classical Frenet-Serret formulas,

(4) t̂α = θαn̂, n̂ = −θαt̂.

The motion of the curve is described by its normal velocity, U, and tangential velocity, V ∶

(5) (x, y)t = U n̂ + V t̂.

Using (5) and the definition of θ, we can infer the following evolution equation for θ ∶

(6) θt =
Uα + V θα

sα
.

The normal velocity is determined by the fluid dynamics, but we can choose the tangential velocity
to maintain a preferred parameterization.

We introduce some notation for the mean value of a function; for a given periodic function f, we
let

⟪f⟫ = 1
2π ∫

2π

0
f(α) dα.

Then, we define the projection P to be projection off the mean; for any periodic f, we have

Pf = f − ⟪f⟫.

Of course, letting I be the identity operator, we could write this as

⟪f⟫ = (I − P)f.
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We also introduce the operator ∂−1
α , the zero-mean integration operator which acts on mean-zero

periodic functions. Given any n ≥ 1, we obviously have the estimate

∥∂−1
α f∥n+1 ≤ ∥f∥n.

For any f, we can write

(7) f = ⟪f⟫ + ∂−1
α ∂αf.

Remark 3. It is to be understood that if we ever write ∂−1
α applied to a function which does

not necessarily have zero mean, then there is an implicit application of P. That is, if f does not
necessarily have zero mean, and if we write ∂−1

α f, then this is to be understood as meaning ∂−1
α Pf.

The parameterization which we prefer is a normalized arclength parameterization. Since we are
considering flows which are periodic in the horizontal direction, we consider L, the length of one
period of the interface. This is defined by

L(t) = ∫
2π

0
sα(α, t) dα.

We can infer the evolution equation for sα from the definition of sα and (5); we find the following:

sαt = Vα − θαU.
Using this, we calculate

Lt = −∫
2π

0
θαU dα = −2π⟪θαU⟫.

Since our preferred parameterization is a normalized arclength parameterization, we desire to have
at all times

sα(α, t) =
L(t)
2π

.

This is then achieved if sα(α,0) = L(0)/2π for all α, and if

sαt =
Lt
2π

= − 1
2π ∫

2π

0
θαU dα = −⟪θαU⟫.

Since sαt = Vα − θαU, this implies that the tangential velocity must be chosen so that

Vα = θαU − ⟪θαU⟫ = P(θαU).
To be definite, we define V to be the integral of Vα which has zero mean:

V = ∂−1
α P(θαU).

We will frequently find complex notation to be helpful. Towards this end, we introduce the
mapping Φ ∶ R2 → C defined by

Φ(a, b) = a + ib.
We let

z(α, t) = Φ(x(α, t), y(α, t)) = x(α, t) + iy(α, t).
We will denote the complex conjugate with ∗, as in Φ(a, b)∗ = a − ib or z∗ = x − iy.

The jump conditions for the velocity at the interface are that there is no jump in the normal
component of the velocity, but there can be a jump in the tangential component. Since the fluid
velocity in the bulk of each fluid is given by a gradient, at first glance one might think that this
implies the flow is exactly irrotational; however, since there is a jump in the tangential component
of the velocity at the interface, the vorticity is measure-valued (i.e., the vorticity is equal to the
Dirac mass of the interface, multiplied by some amplitude). All of this is to say that the interface is
a vortex sheet. We call the vortex sheet strength γ(α, t); this is the amplitude that multiplies the
Dirac mass.
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Related to the curve z, we introduce the shifted (or centered) curve zd, given by

zd(α, t) = z(α, t) − z(0, t).

We consider only interfaces which satisfy a non-self-intersection condition. In particular, as in many
papers in the field, such as [49], [1], [23], we insist that a chord-arc condition be satisfied. To this
end, we introduce the first divided difference of the interface, q1[zd](α,α′),

(8) q1[zd](α,α′) =
zd(α) − zd(α′)

α − α′
.

The chord-arc condition that we will use is the condition that q1 be bounded away from zero, for
all α and α′. Obviously, this precludes self-intersections of the interface; it also precludes cusps and
corners. We will remark more on the definition of zd below, but note for now that q1 could have
been defined in terms of either z or zd with no difference; that is, notice that the value z(0, t) has
no effect upon q1.

Since the interface is a vortex sheet, the normal velocity, U, must be the normal component of
the Birkhoff-Rott integral, W (see [44] for details). That is, U = W ⋅ n̂, with

(9) Φ(W)∗(α, t) = 1
4πi

PV∫
2π

0
γ(α′, t) cot(1

2
(z(α, t) − z(α′, t))) dα′.

We understand the Birkhoff-Rott integral, W, by considering it to be something like the Hilbert
transform. Given a periodic function f, the periodic Hilbert transform, H, is given by the following
formula (see [36] for more information):

Hf(α) = 1
2π

PV∫ f(α′) cot(1
2
(α − α′)) dα′.

The Hilbert transform is a multiplier in Fourier space, with symbol Ĥ(k) = −isgn(k). As in [1], we
have the following useful formula for Wα ∶

(10) Wα = π
L
H(γα)n̂ − π

L
H(γθα)t̂ +m.

In order to give the definition of m, we first must define some relevant integral operators.
Given the curve z, we define the operator K[z] ∶

(11) K[z]f(α) = 1
4πi ∫

2π

0
f(α′) [cot(1

2
(z(α) − z(α′))) − 1

zα(α′)
cot(1

2
(α − α′))] dα′.

Notice that (assuming some regularity on z) the integral in (11) is not a singular integral, since each
of the two cotangents in brackets have the same singularity, which cancels upon subtracting. Also,
notice again that zd could have been used as easily as z; that is,

K[z] = K[zd].

We also need to define the commutator of the Hilbert transform and multiplication by a function,

[H,φ]f(α) =H(φf)(α) − φ(α)H(f)(α).

Using the definition of the Hilbert transform, we can see that this can be written as the following
integral operator:

[H,φ]f(α) = 1
2π ∫

2π

0
f(α′) [(φ(α′) − φ(α)) cot(1

2
(α − α′))] dα′.

Notice that (again, assuming some regularity on φ) this is not a singular integral, since the singularity
in the cotangent is canceled by the difference φ(α′)−φ(α). In Section 4.1 below, we will give estimates
for both K[z] and [H,φ], showing that these are both smoothing operators.
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The formula for m can then be written as

(12) Φ(m)∗ = zαK[z] ((
γ

zα
)
α

) + zα
2i

[H, 1
z2
α

](zα ( γ
zα

)
α

) .

We have the following equation for γ, the vortex sheet strength [38]:

(13) γ = τκα −Ryα − 2AµsαW ⋅ t̂.

We note that the derivation of (13) uses the Laplace-Young jump condition, which states that the
pressure jump across the interface is equal to the curvature of the interface multiplied by the surface
tension coefficient. Here, κ is the curvature of the interface, τ is the constant, non-negative coefficient
of surface tension, and R and Aµ are given by the formulas

R = (ρ1 − ρ2)g, Aµ =
µ1 − µ2

µ1 + µ2
.

The quantities ρi and µi are the density of fluid i and the viscosity of fluid i, respectively, for
i ∈ {1,2}. Of course, g is the constant acceleration due to gravity. We rewrite (13) by using the
formulas κ = θα/sα, yα = sα sin(θ), and sα = L/2π ∶

(14) γ = 2πτ
L
θαα −

RL

2π
sin(θ) −

AµL

π
W ⋅ t̂.

Notice that this equation for γ is actually an integral equation for γ, since γ appears in the right-
hand side through the definition of W. This integral equation is known to be solvable [13]. We will
discuss this further in Section 4.1 below.

We now rewrite (6). To begin, we use the definition U = W ⋅ n̂, the Frenet equation n̂α = −θαt̂,
and the equation sα = L/2π, finding the following:

(15) θt =
2π
L

Wα ⋅ n̂ + 2π
L

(V −W ⋅ t̂) θα.

We now use the formula (10) for Wα to substitute in the first term on the right-hand side of (15):

(16) θt =
2π2

L2
H(γα) +

2π
L

(V −W ⋅ t̂)θα +
2π
L

m ⋅ n̂.

We differentiate (14) with respect to α, finding

(17) γα = 2πτ
L
θααα −

RL

2π
θα cos(θ) −

AµL

π
(Wα ⋅ t̂ + θαU) .

We substitute (17) into (16), arriving at the following:

(18) θt = (4π3τ

L3
)H(θααα) + (2π

L
)H ({−R cos(θ)

2
−AµU} θα)

− (
2π2Aµ

L2
)P(γθα) + (2π

L
) (V −W ⋅ t̂)θα + (2π

L
)m ⋅ n̂ − (

2π3Aµ

L3
)H(m ⋅ t̂).

This is almost our final form for the θt equation, however, since we want to carefully track dependence
on the surface tension coefficient, we want to rewrite several terms on the right-hand side of (18) to
isolate contributions from the surface tension term.

In particular, we write W = τWs.t. +W̃. We define Ws.t. to be the part of W which corresponds
to the contribution of 2πτ

L
θαα from the equation for γ (having factored out the τ):

Φ(Ws.t.)∗(α, t) = 1
2iL

PV∫
2π

0
θαα(α′, t) cot(1

2
(z(α, t) − z(α′, t))) dα′.



10 DAVID M. AMBROSE

The remainder, W̃, is simply defined as being the difference,

W̃ = W − τWs.t..

We then make the corresponding decomposition U = τU s.t. + Ũ , where

U s.t. = Ws.t. ⋅ n̂, Ũ = W̃ ⋅ n̂.
In the same way, we decompose V as V = τV s.t. + Ṽ , where

V s.t. = ∂−1
α P(θαU s.t.), Ṽ = ∂−1

α P(θαŨ).
Finally, we write Lt = τLs.t.

t + L̃t, where

Ls.t.
t = −2π⟪θαU s.t.⟫, L̃t = −2π⟪θαŨ⟫.

We make these substitutions into (18). In particular, we rewrite the following terms from the
right-hand side of (18): (a) the term AµU that appears inside the Hilbert transform, (b) the γ that
appears inside the operator P, and (c) V −W ⋅ t̂. We also make the definition

(19) k(α, t) = k[θ](α, t) = 2π
L

{−R cos(θ)
2

−AµŨ} .

We note that P(θααθα) = θααθα, and that P(sin(θ)θα) = sin(θ)θα, since these are perfect derivatives.
All of these considerations yield the following:

(20) θt = (4π3τ

L3
)H(θααα) − τ [

4π3Aµ

L3
θααθα +

2πAµ
L

H(U s.t.θα)]

+ [H(kθα) +
2πτ
L

(V s.t. −Ws.t. ⋅ t̂)θα +
2πA2

µτ

L
P(θαWs.t. ⋅ t̂)]

+
πAµR

L
sin(θ)θα +

2πA2
µ

L
P(θαW̃ ⋅ t̂) + 2π

L
(Ṽ − W̃ ⋅ t̂)θα +

2π
L

m ⋅ n̂ −
2π3Aµ

L3
H(m ⋅ t̂).

For future reference, we note that the evolution equation without surface tension (i.e., in the case
τ = 0) is the following:

(21) θt =H(kθα)+
πAµR

L
sin(θ)θα+

2πA2
µ

L
P(θαW̃ ⋅ t̂)+ 2π

L
(Ṽ −W̃ ⋅ t̂)θα+

2π
L

m̃ ⋅ n̂−
2π3Aµ

L3
H(m̃ ⋅ t̂).

4. Preliminary estimates

In this section, we will present estimates which will be repeatedly useful throughout the sequel.
We begin by noting that we mainly use the L2-based Sobolev spaces, and we denote these by Hj ,
for j ≥ 0. The associated norm is ∥ ⋅ ∥j . We denote the L∞ norm as ∣ ⋅ ∣∞. We will need the following
interpolation inequality for Sobolev spaces: if f ∈ H`, and if m ∈ R such that ` > m > 0, then there
exists a positive constant such that

(22) ∥f∥m ≤ c∥f∥m/`
` ∥f∥1−m/`

0 .

This is a standard inequality and the proof may be found many places, one of which is [1].

Remark 4. We make a remark about our regularity assumptions. Throughout the sequel, beginning
in Section 4.2, we will be making estimates for the solution of the initial value problem in the space
Hs. Here, s ∈ N is fixed, and it is assumed to be “sufficiently large.” What this means is that there
exists an absolute constant, S̄, such that as long as s ≥ S̄, the arguments that we present will go
through. The reason that s must be sufficiently large is so that various results, such as the lemmas
to be presented in Section 4.1 below, or the Sobolev embedding theorem, may be invoked. We do
not count the minimal possible value of S̄, but surely s ≥ 6 is sufficient.
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4.1. Estimates for integral operators. We begin by noting that when reconstructing z from θ,
we are only able to find z up to a constant. This constant, however, is irrelevant to the calculation of
W, since only the difference z(α, t)−z(α′, t) appears in the definition of W. Therefore, it is sufficient
to know zd in order to calculate W, since z(α, t) − z(α′, t) = zd(α, t) − zd(α′, t).

The lemmas which will appear in this section have been proved, at least in closely related versions,
in previous works by the author and others, such as [15], [1], [11]. To begin, we have the following
lemma, which was proved as Lemma 3.5 of [1]:

Lemma 1. Let n ≥ 2 be an integer. Assume zd ∈ Hn. Then K[zd] ∶ H1 → Hn−1 and K[zd] ∶ H0 →
Hn−2, with the estimates

∥K[zd]f∥n−1 ≤ C1∥f∥1 exp{C2∥zd∥n} ,
∥K[zd]f∥n−2 ≤ C1∥f∥0 exp{C2∥zd∥n} .

Remark 5. The proof of Lemma 1 is based on the facts that the kernel of the integral operator
K[zd] is nonsingular, and is bounded in Hn−2 when zd is in Hn. If we were to have a more singular
f, say f ∈H−2, then we could simply begin by integrating by parts, placing more derivatives on the
kernel before making estimates. Then, the kernel would still be nonsingular, and would just be less
regular. As a result, we find that K[zd] maps from H−2 to Hn−4, with the estimate

(23) ∥K[zd]f∥n−4 ≤ C1∥f∥−2 exp{C2∥zd∥n} .
This will be relevant during the proof of Lemma 16 below.

We also need a Lipschitz estimate for K; this estimate was proved in [11].

Lemma 2. Let θ and θ′ be in H1. Let L and L′ be the corresponding lengths of the associated
curves zd and z′d, and let q1 and q′1 be the associated chord-arc quantities. Assume there exists
positive constants c̄1 and c̄2 such that L < c̄1 and L′ < c̄1, and for all α and α′,

∣q1(α,α′)∣ > c̄2, ∣q′1(α,α′)∣ > c̄2.
Then the following Lipschitz estimate holds, for any f ∈H1 ∶

∥K[zd]f −K[z′d]f∥1 ≤ c∥θ − θ′∥1∥f∥1.

We also have the following lemma, which was proved as Lemma 3.7 of [1]:

Lemma 3. Let n ≥ 1 be an integer. Let φ ∈ Hn be given. Then [H,φ] ∶ H0 → Hn−1 and [H,φ] ∶
H−1 →Hn−2, with the estimates

∥[H,φ]f∥n−1 ≤ c∥φ∥n∥f∥0,

(24) ∥[H,φ]f∥n−2 ≤ c∥φ∥n∥f∥−1.

Remark 6. As in Remark 5, we note that if f is less regular, then a version of the commutator
estimate still holds. This is true for the same reason as in Remark 5, namely that the operator
[H,φ] is really an integral operator with nonsingular kernel. In the case of an f with low regularity
(such as f ∈ H−2), we may first integrate by parts before making estimates. Indeed, this is exactly
how (24) is proved, and for f ∈H−2, we need only integrate by parts once more than we did to find
(24). This results in the following estimate:

(25) ∥[H,φ]f∥n−3 ≤ c∥φ∥n∥f∥−2.

Again, this will be useful during the proof of Lemma 16 below.

Notice that in Lemma 3, only low regularity of the function f is assumed. If f does have higher
regularity, then it can be used to conclude that [H,φ] actually maps into Hn when φ ∈Hn. This is
the subject of the next lemma, which generalizes Corollary 3.8 of [1]:
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Lemma 4. Let j ≥ 1 be an integer. Let n ≥ 2j be an integer. Let φ ∈ Hn be given. Then,
[H,φ] ∶Hn−j →Hn, with the estimate

∥[H,φ]f∥n ≤ c∥φ∥n∥f∥n−j .

Proof: We apply ∂nx , which we break up as ∂jx∂
n−j
x . We also use the product rule for ∂n−jx . These

considerations yield the following:

∂nx [H,φ]f = ∂jx (∂n−jx (H(φf) − φH(f))) = ∂jx
n−j

∑
`=0

(n − j
`

)(H ((∂`xφ)(∂n−j−`x f)) − (∂`xφ)H(∂n−j−`x f)) .

We further break this up, considering ` < j and ` ≥ j separately (notice that n − j ≥ j):

(26) ∂nx [H,φ]f = (∂jx
j−1

∑
`=0

(n − j
`

) [H,∂`xφ]∂n−j−`x f)

+
⎛
⎝
∂jx

n−j

∑
`=j

(n − j
`

)H ((∂`xφ)(∂n−j−`x f))
⎞
⎠
−
⎛
⎝
∂jx

n−j

∑
`=j

(n − j
`

)(∂`xφ)H(∂n−j−`x f)
⎞
⎠
.

For the second and third summations on the right-hand side of (26), we have ∂`xφ ∈Hj for all `, and
∂n−j−`x f ∈ Hj for all `. Since j ≥ 1, we have that Hj is an algebra, so the summands in the second
and third summations are all in Hj . For the first summation, we have that ∂n−j−`x f ∈ H0 for all `,
and since φ ∈Hn with n ≥ 2j, we also have ∂`xφ ∈Hj+1 for all `. Therefore, Lemma 3 applies, and we
find that the summands in the first summation are all in Hj . Putting this all together, we conclude
that ∂nx [H,φ]f is in H0, with the corresponding bound. This completes the proof. ∎

We must now introduce another integral operator, which we will call J . Because of the presence
of W on the right-hand side of (14), the equation is an integral equation for γ. If we define the
operator J by

J [zd]f(α) = −Re{izd,α(α)PV∫ f(α′) cot(1
2
(zd(α) − zd(α′))) dα′} ,

then (14) is of the form

(I +
Aµ

2π
J [zd])γ = F,

for some F. Here, I is the identity operator.

Lemma 5. Assume zd ∈ Hn for n ≥ 3. The operator (I + Aµ
2π
J [zd])

−1
is bounded from H0 to H0,

with the estimate

∥(I +
Aµ

2π
J [zd])

−1

F∥
0

≤ c1exp{c2∥zd∥3}∥F ∥0.

We do not prove this lemma here, but we refer the reader to the discussion in the papers [13] and
[23].

4.2. Estimates and formulas for quantities related to θ. Throughout the sequel, we will need
a variety of estimates and formulas for quantities related to θ, such as for W ⋅ t̂, as one example. We
establish such estimates and formulas in this section

To begin, we define γ̃ = γ − 2πτ
L
θαα. To be a bit more precise, using (14), we define γ̃ to be the

following quantity:

(27) γ̃ = γ̃[θ] = −RL
2π

sin(θ) −
AµL

π
W ⋅ t̂.

As the notation in (27) suggests, we view γ̃ to be an operator which acts on θ. This viewpoint will
be useful later, when we define a regularized version of the evolutionary problem.
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Lemma 6. If θ ∈Hs, then γ̃[θ] ∈Hs.

Proof: We know from Lemma 5 that there exists γ ∈H0 which satisfies (14). Inspecting the right-
hand side of (14), we see that in order to prove higher regularity of γ̃, it is sufficient to study the
regularity of W ⋅ t̂.

We add and subtract in (9), and we use that definition of K[z], to find

(28) Φ(W)∗ = 1
2i
H ( γ

zα
) +K[z](γ).

We take the dot product of W with t̂ ∶

W ⋅ t̂ = Re{πzα
Li

H ( γ
zα

)} +Re{2πzα
L
K[z](γ)} .

We pull the factor 1/zα outside the Hilbert transform, incurring a commutator; also, notice that
Re{ π

Li
H(γ)} = 0. This yields the following:

(29) W ⋅ t̂ = Re{πzα
Li

[H, 1
zα

]γ} +Re{2πzα
L
K[z](γ)} .

Recall that zα = L
2π

(cos(θ), sin(θ)), so we have zα ∈ Hs, and thus zd ∈ Hs+1. Furthermore, since
∣zα∣ = L/2π ≥ 1, we have 1/zα ∈Hs as well. From Lemma 1 and Lemma 3, we can then find constants
c1 and c2 such that

∥W ⋅ t̂∥s−1 ≤ c1 exp{c2∥θ∥s}.
Since W ⋅ t̂ ∈ Hs−1, we conclude from (14) that γ ∈ Hs−2. Then, we look again at (29), and we can
use Lemma 1 again (in the same fashion as before), but we can now use Lemma 4, and we find
W ⋅ t̂ ∈Hs, with

∥W ⋅ t̂∥s ≤ c1 exp{c2∥θ∥s}.
This completes the proof. ∎

Remark 7. Just as we bounded W ⋅ t̂ in the previous lemma, we have the following estimates:

∥Ws.t. ⋅ t̂∥s ≤ c1 exp{c2∥θ∥s},

∥W̃ ⋅ t̂∥s ≤ c1 exp{c2∥θ∥s}.

Notice that we have the following formulas:

(V −W ⋅ t̂)α = Lt
2π

−Wα ⋅ t̂,

(V s.t. −Ws.t. ⋅ t̂)α = L
s.t.
t

2π
−Ws.t.

α ⋅ t̂,

(Ṽ − W̃ ⋅ t̂)α = L̃t
2π

− W̃α ⋅ t̂.

We also need to define ms.t. and m̃. Similarly to the previous definitions, we have m = τms.t.+m̃.
This decomposition comes about by using γ̃ to define m̃ ∶

(30) Φ(m̃)∗ = zαK[z] ((
γ̃

zα
)
α

) + zα
2i

[H, 1
z2
α

](zα ( γ̃
zα

)
α

) .

The definition of ms.t. is then given by

(31) Φ(ms.t.)∗ = 2πzα
L
K[z] ((θαα

zα
)
α

) + πzα
Li

[H, 1
z2
α

](zα (θαα
zα

)
α

) .
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By Lemma 1 and Lemma 4, we see that each of ms.t. and m̃ are in Hs, with the estimates

(32) ∥ms.t.∥s ≤ c1 exp{c2∥θ∥s}, ∥m̃∥s ≤ c1 exp{c2∥θ∥s}.

From (10), we see that

Wα ⋅ t̂ = −
π

L
H(γθα) +m ⋅ t̂.

We have the corresponding formulas

(33) Ws.t.
α ⋅ t̂ = −2π2

L2
H(θααθα) +ms.t. ⋅ t̂,

W̃α ⋅ t̂ = −
π

L
H(γ̃θα) + m̃ ⋅ t̂.

This allows us to rewrite the above formulas, so that we find

(V s.t. −Ws.t. ⋅ t̂)α = L
s.t.
t

2π
+ 2π2

L2
H(θααθα) −ms.t. ⋅ t̂,

(Ṽ − W̃ ⋅ t̂)α = L̃t
2π

+ π
L
H(γ̃θα) − m̃ ⋅ t̂.

We note that it will be helpful in the sequel if we rewrite (33) by pulling θα through the Hilbert
transform in the first term on the right-hand side of (33):

(34) Ws.t.
α ⋅ t̂ = −2π2

L2
θαH(θαα) +ms.t. ⋅ t̂ − 2π2

L2
[H,θα]θαα.

We also want a helpful formula for U s.t.
α . Since U s.t. = Ws.t. ⋅ n̂, we clearly have U s.t.

α = Ws.t.
α ⋅ n̂ −

θα(Ws.t. ⋅ t̂). We also have

Ws.t.
α ⋅ n̂ = 2π2

L2
H(θααα) +ms.t. ⋅ n̂.

Combining these formulas, we find

(35) U s.t.
α = 2π2

L2
H(θααα) − θα(Ws.t. ⋅ t̂) +ms.t. ⋅ n̂.

Using (7) with (35), we see that

(36) U s.t. = ⟪U s.t.⟫ + 2π2

L2
H(θαα) + ∂−1

α (−θα(Ws.t. ⋅ t̂) +ms.t. ⋅ n̂) .

We give the name Q to the lower-order terms on the right-hand side, so that

(37) U s.t. = 2π2

L2
H(θαα) +Q.

Remark 8. Strictly speaking, we will not need these formulas and estimates until Section 6.2 below.
More immediately, we introduce a mollified version of the evolution equations, and we establish
formulas corresponding to those in the present section for the mollified problem. This will be done
next, in Section 5.
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5. Well-posedness with surface tension

In this section, we establish the existence of solutions for the initial value problem in the presence
of surface tension. We also establish uniqueness of these solutions, and continuous dependence on
the initial data. We do this without assuming that the stability condition is satisfied by the initial
data. We begin by introducing mollifiers, forming an evolution equation for θε. We then rewrite
this evolution equation, differentiating twice to find the evolution equation for θεαα. We continue by
extracting the most singular terms. The ultimate goal of this endeavor is to arrive at formula (58)
below. We will then establish some related auxiliary estimates; this will leave us ready to perform
the energy estimate for the full problem which corresponds to the estimate of Case 3 of Section 2.
We make this estimate in Section 5.4. Then, in Section 5.5, we establish existence of solutions. We
subsequently discuss uniqueness and continuous dependence.

5.1. The mollified evolution equation. In this section, we introduce the mollified problem. Ear-
lier in this manuscript, we have introduced a variety of nonlocal quantities, such as W, V, and so on.
We will now define new versions of all of these quantities, and these new versions will all depend,
either explicitly or implicitly, on ε, our positive mollification parameter. First, however, we must
define the curve zε, which is determined from θε.

We need to be careful in defining zε because it is not the case that any 2π-periodic tangent angle
gives rise to a 2π-periodic curve. (However, for the exact evolution equation, if the tangent angle
initially corresponds to a 2π-periodic curve, then the tangent angle will correspond to a 2π-periodic
curve at positive times as well.) We begin with the observation that the value z(0) is irrelevant
to the evolution of θ; that is, the only way that z arises is either through zα or z(α) − z(α′).
Therefore, we recall the definition zd(α, t) = z(α, t) − z(0, t), and we notice that zα = zd,α and
z(α) − z(α′) = zd(α) − zd(α′). Also, z is 2π-periodic if and only if zd is 2π-periodic. So, we want to
define zεd based on θε. To begin, we find a formula for the length of the curve in the non-mollified
problem. From the periodicity, we have (for any t)

2π = x(2π, t) − x(0, t) = ∫
2π

0
xα(α, t) dα.

Since we have cos(θ) = xα/sα = 2πxα/L, we can write this as

2π = L

2π ∫
2π

0
cos(θ(α, t)) dα.

Solving this for L yields

(38) L = 4π2

∫
2π

0 cos(θ(α, t)) dα
,

and we therefore make the definition

Lε(t) = 4π2

∫
2π

0 cos(θε(α, t)) dα
.

Next, we define zεd(α, t) by

(39) zεd(α, t) =
Lε

2π ∫
α

0
cos(θε(α′, t)) + iP(sin(θε(α′, t))) dα′.

With this definition of the curve, we clearly have zεd(α + 2π, t) = zεd(α, t) + 2π. We have the corre-
sponding unit tangent and normal vectors,

Φ(t̂ε) =
zεd,α

∣zεd,α∣
, Φ(n̂ε) =

izεd,α

∣zεd,α∣
.
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We will revisit this definition of zεd below, as we will be able to eliminate the presence of the operator
P for solutions of the mollified evolution equation.

For ε > 0, we introduce the mollifier χε. This is a standard mollifier, and could be defined in a
few different ways. For instance, χεf could be the operator which truncates the Fourier series of f
for modes beyond 1/ε. To be definite, however, we specify that χε is the periodic convolution with
an approximate Dirac mass, scaled so that the support of the approximate Dirac mass has width ε
and the maximum value is on the order of 1/ε.

We write the mollified evolution equation as

(40) θεt = Bε + µε,
where

(41) Bε = ( 4π3τ

(Lε)3
)χ2

εH(θεααα) − τχε [
4π3Aµ

(Lε)3
(χεθεαα)(χεθεα) +

2πAµ
Lε

H(U s.t.,εχεθ
ε
α)]

+ χε [H (kεχεθεα) +
2πτ
Lε

(V s.t.,ε −Ws.t.,ε ⋅ t̂ε)χεθεα +
2πA2

µτ

Lε
P((χεθεα)Ws.t.,ε ⋅ t̂ε)]

+
πAµR

Lε
χε (sin(χεθε)χεθεα) +

2πA2
µ

Lε
χεP((χεθεα)W̃ε ⋅ t̂ε)

+ 2π
Lε
χε [(Ṽ ε − W̃ε ⋅ t̂ε)χεθεα] +

2π
Lε
χε [mε ⋅ n̂ε] −

2π3Aµ

(Lε)3
χεH(mε ⋅ t̂ε).

There are several terms above which have not yet been defined; they will be defined shortly, either
in the present subsection, or in Section 5.2 below. Notice that Bε is a mollified version of the
right-hand side of (20); for our later convenience, we also introduce the notation B to refer to the
right-hand side of (20). In (41), the placement of the operators χε may perhaps seem arbitrary or
unusual, but they are carefully placed so that the estimates we are about to undertake will work
out. It would be reasonable to think that there is no need for the additional term µε, as Bε provides
a mollified version of the evolution equation for θ. However, it will be helpful if the evolution of θε

maintains the property that P(sin(θε)) = sin(θε); the term µε enforces this condition. We note that
µε will depend only on t, and not on α.

To begin, we recall that under the exact, non-mollified evolution, we have θt = (Uα + V θα)/sα,
and Vα = sαt/sα + θαU. If we consider the evolution of ∫

2π
0 sin(θ) dα, we have

d

dt
∫

2π

0
sin(θ) dα = ∫

2π

0
cos(θ)θt dα = 1

sα
∫

2π

0
cos(θ)Uα + cos(θ)V θα dα.

We integrate both terms on the right-hand side by parts, noting that cos(θ)θα is a perfect derivative:
d

dt
∫

2π

0
sin(θ) dα = 1

sα
∫

2π

0
sin(θ)θαU − sin(θ)Vα dα.

We substitute for Vα and see an important cancellation; this leaves only
d

dt
∫

2π

0
sin(θ) dα = −sαt

sα
∫

2π

0
sin(θ) dα.

Clearly, then, for smooth solutions of the non-mollified equation, if initially ⟪sin(θ)⟫ = 0, then this
property is maintained by the evolution. For the mollified equation, we do not have the simple
structure that we used in the present calculation, and we must actively enforce this condition. We
begin the above calculation again, this time for a solution of the mollified evolution, and we use the
fact that µε is to be independent of α ∶

d

dt
∫

2π

0
sin(θε) dα = ∫

2π

0
cos(θε)θεt dα = ∫

2π

0
cos(θε)Bε dα + µε ∫

2π

0
cos(θε) dα.
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Setting this equal to zero, and recalling the definition of Lε, we have the definition of µε ∶

(42) µε = −∫
2π

0 cos(θε)Bε dα

4π2Lε
.

We said previously that we would revisit the expression (39) for the curve to be reconstructed
from θε. We now give another, simpler such expression. By construction, because of the presence
of µε, if θε is the solution of (40), then we have P(sin(θε)) = sin(θε). In light of this, we are able to
state the definition of zεd without needing P ∶

zεd(α, t) =
Lε

2π ∫
α

0
cos(θε(α′, t)) + i sin(θε(α′, t)) dα′.

Note that the benefit of this is that we are able to write

(43) zεd,α = L
ε

2π
(cos(θε) + i sin(θε)),

implying that ∣zεd,α∣ is independent of α, as desired. The presence of the operator P would have
complicated this. An immediate consequence of (43) is that we can write

t̂ε = (cos(θε), sin(θε)), n̂ε = (− sin(θε), cos(θε)).
Another consequence is, since ∣zεd,α∣ = Lε/2π, and since the curve is 2π-periodic, we must have

(44) Lε ≥ 2π.

Note that zεd is bounded in terms of θε and Lε. This can be proved directly by using either formula
(39) or (43). The estimate one finds is, for θ ∈Hs,

∥zεd∥s+1 ≤ cL(1 + ∥θε∥s).
Of course, this is true without the superscripts of ε as well.

5.2. The mollified Birkhoff-Rott integral and its consequences. We need similar formulas
to those previously established. To begin, we define Wε to be Wε = τWs.t.,ε + W̃ε, with

Φ(Ws.t.,ε)∗(α, t) = 1
2iLε

PV∫
2π

0
χεθ

ε
αα(α′, t) cot(1

2
(zεd(α, t) − zεd(α′, t))) dα′,

Φ(W̃ε)∗(α, t) = 1
4πi

PV∫ γ̃[θε](α′) cot(1
2
(zεd(α) − zεd(α′))) dα′.

We then define U s.t.,ε = Ws.t.,ε ⋅ n̂ε and V s.t.,ε = ∂−1
α P(θεαU s.t.,ε). Correspondingly, we define Ũε =

W̃ε ⋅ n̂ε and Ṽ ε = ∂−1
α P(θεαŨε). Now that we have defined Ũε, we may define kε ∶

(45) kε = 2π
L

{−R cos(θε)
2

−AµŨε} .

Notice, however, that this is the same as saying the following:

(46) kε = k[θε].
We also will need definitions of ms.t.,ε and m̃ε. We define them as follows:

Φ(m̃ε)∗ = zεd,αK[zεd]
⎛
⎝
⎛
⎝
γ̃[θε]
zεd,α

⎞
⎠
α

⎞
⎠
+
zεd,α

2i

⎡⎢⎢⎢⎣
H,

1
(zεd,α)2

⎤⎥⎥⎥⎦

⎛
⎝
zεd,α

⎛
⎝
γ̃[θε]
zεd,α

⎞
⎠
α

⎞
⎠
,

Φ(ms.t.,ε)∗ =
2πzεd,α
Lε

K[zεd] ((
χεθ

ε
αα

zd,α
)
α

) +
πzεd,α

Li

⎡⎢⎢⎢⎣
H,

1
(zεd,α)2

⎤⎥⎥⎥⎦

⎛
⎝
zεd,α

⎛
⎝
χεθ

ε
αα

zεd,α

⎞
⎠
α

⎞
⎠
.

Of course, as before, we have the definition of mε given ms.t.,ε and m̃ε ∶
mε = τms.t.,ε + m̃.
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We note that this was the final quantity from (41) which had been undefined; therefore, we have
now fully specified the mollified evolution.

Taking a derivative of U s.t.,ε, we clearly have

U s.t.,ε
α = Ws.t.,ε

α ⋅ n̂ε − θεαWs.t.,ε ⋅ t̂ε.

We can write, similarly to the unmollified case, the following expression for Ws.t.,ε
α ⋅ n̂ε ∶

Ws.t.,ε
α ⋅ n̂ε = 2π2

(Lε)2
χεH(θεααα) +ms.t.,ε ⋅ n̂ε.

Putting these equations together, we arrive at our expression for U s.t.,ε
α ∶

(47) U s.t.,ε
α = 2π2

(Lε)2
χεH(θεααα) − θεαWs.t.,ε ⋅ t̂ε +ms.t.,ε ⋅ n̂ε.

Integrating with respect to α, we find the corresponding expression for U s.t.,ε ∶

(48) U s.t.,ε = ⟪U s.t.,ε⟫ + 2π2

(Lε)2
χεH(θεαα) + ∂−1

α (−θεα(Ws.t.,ε ⋅ t̂ε) +ms.t.,ε ⋅ n̂ε) .

We also have the following:

(49) Ws.t.,ε
α ⋅ t̂ε = − 2π2

(Lε)2
θεαχεH(θεαα) +ms.t.,ε ⋅ t̂ε − 2π2

(Lε)2
[H,θεα]χεθεαα.

5.3. Higher derivatives. It is helpful to apply one spatial derivative to (40). Notice that since µε

does not depend on α, it will make no contribution, and we will simply have θεα,t = Bε
α. Furthermore,

we note that since ∂αP = ∂α, the operator P will not appear in the differentiated equation. With
these considerations in mind, applying the derivative, we find

(50) θεα,t =
4π3τ

(Lε)3
χ2
εH∂

4
α(θε) − τχε [

4π3Aµ

(Lε)3
(χεθεα)(χεθεααα) +

2πAµ
Lε

H(U s.t.,ε
α χεθ

ε
α)]

− τχε [
4π3Aµ

(Lε)3
(χεθεαα)2] − τχε [

2πAµ
Lε

H(U s.t.,εχεθ
ε
αα)]

+ χεH(kεχεθεαα) + χεH(kεαχεθεα) −
2πτ
Lε

χε [(Ws.t.,ε
α ⋅ t̂ε)χεθεα] +

τLs.t.,ε
t

Lε
χ2
εθ
ε
α

+ 2πτ
Lε

χε [(V s.t.,ε −Ws.t.,ε ⋅ t̂ε)χεθεαα]

+
2πA2

µτ

Lε
χε

⎡⎢⎢⎢⎢⎣
(χεθεαα)Ws.t.,ε ⋅ t̂ε + (χεθεα)∂α(Ws.t.,ε ⋅ t̂ε)

⎤⎥⎥⎥⎥⎦

+ ∂αχε
⎡⎢⎢⎢⎢⎣

πAµR

Lε
sin(χεθε)χεθεα +

2πA2
µ

Lε
(χεθεα)W̃ε ⋅ t̂ε

+ 2π
Lε

(Ṽ ε − W̃ε ⋅ t̂ε)χεθεα +
2π
Lε

mε ⋅ n̂ε −
2π3Aµ

(Lε)3
H(mε ⋅ t̂ε)

⎤⎥⎥⎥⎥⎦
.

We continue to rearrange this, to isolate the terms which must be treated carefully in the energy
estimate. In particular, we use (49), (47), and (48) to substitute for Ws.t.,ε

α ⋅ t̂, U s.t.,ε
α , and U s.t.,ε in

(50). In addition, we make another substitution. Since the mean value of the Hilbert transform of
any function is zero, we can write

(51) H(U s.t.,εχεθ
ε
αα) = ∂−1

α ∂αH(U s.t.,εχεθ
ε
αα) = ∂−1

α H(U s.t.,ε
α χεθ

ε
αα) + ∂−1

α H(U s.t.,εχεθ
ε
ααα).



THE ZERO SURFACE TENSION LIMIT OF 2D DARCY FLOW 19

We substitute (47) into the first term on the right-hand side of (51), and we pull U s.t.,ε through the
Hilbert transform in the second term on the right-hand side of (51), incurring a commutator. This
yields the following:

(52) H(U s.t.,εχεθ
ε
αα) =

2π2

(Lε)2
∂−1
α H ((χεθεαα)H(χεθεααα)) + ∂−1

α (U s.t.,εH(χεθεααα))

+ ∂−1
α H ((χεθεαα)( − θεα(Ws.t.,ε ⋅ t̂ε) +ms.t.,ε ⋅ n̂ε)) + ∂−1

α [H,U s.t.,ε]χεθεααα.

We pull χεθεαα through the Hilbert transform in the first term on the right-hand side of (52), incurring
a commutator. We also use the fact that H2 = −I when applied to functions with zero mean. These
considerations yield the following:

(53) H(U s.t.,εχεθ
ε
αα) = −

2π2

(Lε)2
∂−1
α ((χεθεαα)χεθεααα) + ∂−1

α (U s.t.,εH(χεθεααα))

+ 2π2

(Lε)2
∂−1
α [H,χεθεαα]H(χεθεααα) + ∂−1

α [H,U s.t.,ε]χεθεααα

+ ∂−1
α H ((χεθεαα)( − θεα(Ws.t.,ε ⋅ t̂ε) +ms.t.,ε ⋅ n̂ε)) .

Similarly to this calculation, but more simply, we want to use (47) to expand H(U s.t.,ε
α χεθ

ε
α). We

have

H(U s.t.,ε
α χεθ

ε
α) =

2π2

(Lε)2
H ((χεθεα)H(χεθεααα)) −H((χεθεα)θεαWs.t.,ε ⋅ t̂ε) +H((χεθεα)ms.t.,ε ⋅ n̂ε).

In the first term on the right-hand side, we pull χεθεα through the Hilbert transform, incurring a
commutator. We also use the fact that H2 = −I for mean-zero functions. This yields the following:

(54) H(U s.t.,ε
α χεθ

ε
α) = −

2π2

(Lε)2
(χεθεα)χεθεααα −H((χεθεα)θεαWs.t.,ε ⋅ t̂ε)

+H((χεθεα)ms.t.,ε ⋅ n̂ε) + 2π2

(Lε)2
[H,χεθεα]H(χεθεααα).

We rewrite (50) according to the above considerations. We find

(55) θεα,t = χε [
4π3τ

(Lε)3
H∂4

α(χεθε) + τΥε
1χεθ

ε
ααα +Υε

2 +Υε
3 +Υε

4] ,

where we will give formulas for the Υε
i shortly. We first mention that Υε

1 is clearly just the coefficient
of τχεθεααα. Next, Υε

2 is essentially a collection of terms which include H(χεθεαα); it is not this simple,
however, since we also include the term ∂−1

α (U s.t.,εH(χεθεααα)) from (53). The distinction between
Υε

3 and Υε
4 is that Υε

3 consists of transport terms, and Υε
4 consists of smooth terms; these are

all routine to estimate, but they need to be treated differently in the energy estimates, since the
transport terms require an integration by parts that the smooth terms do not.

Using (54), we find that the formula for Υε
1 is

(56) Υε
1 = −

4π3Aµ

(Lε)3
χεθ

ε
α +

4π3Aµ

(Lε)3
χεθ

ε
α = 0.

Remark 9. Even if these two terms did not cancel, this would not be an obstacle to the rest of
the proof. The fact that Υε

1 is zero corresponds, in the example of Section 2, to having the value
c1 = 0. In the example, we were able to bound the relevant term even when c1 > 0, which is the more
difficult case.
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We write H(kεχεθεαα) = kεH(χεθεαα) + [H,kε]χεθεαα, and we use (53) and (49), collecting terms
that are essentially proportional to H(χεθεαα) into Υε

2 ∶

Υε
2 = kεH(χεθεαα) −

2πτAµ
Lε

∂−1
α (U s.t.,εH(χεθεααα)) +

4π3τ

(Lε)3
(θεαχεθεα)H(χεθεαα).

The term Υε
3 is the collection terms that are essentially transport terms:

Υε
3 = −

4π3τAµ

(Lε)3
(χεθεαα)2 +

4π3τAµ

(Lε)3
∂−1
α ((χεθεαα)χεθεααα) +

2πτ
Lε

(V s.t.,ε −Ws.t.,ε ⋅ t̂ε)χεθεαα

+
2πτA2

µ

Lε
(Ws.t.,ε ⋅ t̂ε)χεθεαα +

πAµR

Lε
sin(χεθε)χεθεαα

+
2πA2

µ

Lε
(W̃ε ⋅ t̂ε)χεθεαα +

2π
Lε

(Ṽ ε − W̃ε ⋅ t̂ε)χεθεαα.

Of course, Υε
4 consists of all remaining terms:

(57) Υε
4 =

2πτAµ
Lε

H((χεθεα)θεαWs.t.,ε ⋅ t̂ε) −
2πτAµ
Lε

H((χεθεα)ms.t.,ε ⋅ n̂ε)

−
4π3τAµ

(Lε)3
[H,χεθεα]H(χεθεααα) −

4π3τAµ

(Lε)3
∂−1
α [H,χεθεαα]H(χεθεααα)

−
2πτAµ
Lε

∂−1
α H ((χεθεαα)(−θεα(Ws.t.,ε ⋅ t̂ε) +ms.t.,ε ⋅ n̂ε)) −

2πτAµ
Lε

∂−1
α [H,U s.t.,ε]χεθεααα

+ [H,kε]χεθεαα +H(kεαχεθεα) −
2πτ
Lε

(χεθεα)ms.t.,ε ⋅ t̂ε + 4π3τ

(Lε)3
(χεθεα)[H,θεα]χεθεαα

+ τL
s.t.,ε
t

Lε
χ2
εθ
ε
α +

2πA2
µτ

Lε
(χεθεα)∂α(Ws.t.,ε ⋅ t̂ε) +

πAµR

Lε
(χεθεα)2 cos(χεθε)

+
2πA2

µ

Lε
(χεθεα)(W̃ε ⋅ t̂ε)α +

2π
Lε

(χεθεα)(Ṽ ε − W̃ε ⋅ t̂ε)α +
2π
Lε

(mε ⋅ n̂ε)α −
2π3Aµ

(Lε)3
H(mε ⋅ t̂ε)α.

Now, we differentiate (55) with respect to α and we also use again the notation Λ =H∂α, arriving
at our desired formula,

(58) θεαα,t = χε [−
4π3τ

(Lε)3
Λ3(χεθεαα) +Υε

5Λ(χεθεαα) +Υε
6χεθ

ε
ααα +Υε

7] ;

we will give the definitions of Υε
5, Υε

6, and Υε
7 next.

First, Υε
5 is deduced from the definition of Υε

2, and is given by

(59) Υε
5 = kε −

2πτAµ
Lε

U s.t.,ε + 4π3τ

(Lε)3
θεαχεθ

ε
α.

Next, we have the formula for Υε
6, which is deduced from Υε

3 ∶

Υε
6 = −

4π3τAµ

(Lε)3
χεθ

ε
αα +

2πτ
Lε

(V s.t.,ε −Ws.t.,ε ⋅ t̂ε) +
2πτA2

µ

Lε
Ws.t.,ε ⋅ t̂ε

+
πAµR

Lε
sin(χεθε) +

2πA2
µ

Lε
W̃ε ⋅ t̂ε + 2π

Lε
(Ṽ ε − W̃ε ⋅ t̂ε).

Once again, all of the remaining terms are incorporated into the final term, which is now Υε
7. The

remaining terms include the derivative of Υε
4, in addition to leftover terms from the derivatives of
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Υε
2 and Υε

3 ∶

Υε
7 = Υε

4,α + kεαH(χεθεαα) +
4π3τ

(Lε)3
(Hχεθεαα)∂α(θεαχεθεα) +

2πτ
Lε

(χεθεαα)∂α(V s.t.,ε −Ws.t.,ε ⋅ t̂ε)

+
2πτA2

µ

Lε
(χεθεαα)∂α(Ws.t.,ε ⋅ t̂ε) +

πAµR

Lε
(χεθεαα)(χεθεα) cos(χεθε)

+
2πA2

µ

Lε
(χεθεαα)∂α(W̃ε ⋅ t̂ε) + 2π

Lε
(χεθεαα)∂α(Ṽ ε − W̃ε ⋅ t̂ε).

5.4. The energy estimate with τ > 0. Let d̄1, d̄2, and d̄3 be positive numbers. Let the open set
O ⊆Hs(X) be defined as the subset of Hs(X) such that for all θ ∈ O, the following conditions hold:

(60) ∥θ∥s < d̄1, L < d̄2, ∣q1[zd](α,α′)∣ = ∣zd[θ](α) − zd[θ](α
′)

α − α′
∣ > d̄3, ∀α,α′.

Notice that for a typical θ, it will not be the case that ⟪sin(θ)⟫ = 0, but we would like the curve
which we construct from θ to be 2π-periodic. Therefore, we use the method of constructing a curve
outlined in (39), which applies a projection in order to remove the mean of sin(θ). Also, the length
L used in (60) is the length defined by (38).

As in Section 2, for convenience, we will denote the domain for the spatial variable, α, by X. Of
course, X is the periodic interval [0,2π].

Given this open set, we are able to use the Picard theorem to prove existence of solutions of the
initial value problem, with the solutions in the set O at each time. (Note that the particular version
of the Picard theorem being used is Theorem 3.1 from [42]; closely related versions of the Picard
theorem can be found, for instance, in [35] or [56].) To verify the hypotheses of the Picard theorem,
we need to know that the right-hand side of the evolution equation maps into the space Hs, and is
Lipschitz. These properties are not difficult to establish for the mollified equation, and we do not
provide the details here. The conclusion of our application of the Picard theorem is the following:

Lemma 7. Let τ > 0 and ε > 0 be given. Let θ0 ∈ O satisfying ⟪sin(θ0)⟫ = 0 be given. Then, there
exists T ε > 0 and θε ∈ C1((−T ε, T ε);O) such that for all t ∈ (−T ε, T ε), the equation (40) is satisfied
by θε, and such that θε(⋅,0) = θ0.

We remark again that since these solutions θε satisfy (40), it is the case that ⟪sin(θε)⟫ = 0 at
positive times. We now seek to establish that these solutions θε all exist on a common time interval,
and to this end, we prove an energy estimate. Before doing this, it is helpful to have a lemma about
the regularity of the various Υi.

Lemma 8. Let θε in O be given, such that ⟪sin(θε)⟫ = 0. We have Υε
4 ∈ Hs−1, with the norm

bounded uniformly with respect to τ ∈ [0,1] and ε ∈ [0,1]. For i ∈ {5,6,7}, we have Υε
i ∈ Hs−2, with

the norms bounded uniformly with respect to τ ∈ [0,1] and ε ∈ [0,1].

Proof: We will not carry out every detail of the proof of this lemma, but we will give the idea. We

begin by noting that
1
Lε

is bounded above, which can be seen from (44).

For Υε
4, the proof is lengthy, but straightforward. As can be seen in (57), there are many terms

on the right-hand side of the definition of Υε
4. Using (57), we write Υε

4 = ∑17
j=1 Ξj ; each of the 17

terms corresponds to one of the terms on the right-hand side of (57) in the straightforward way.
To begin, we have from the Sobolev algebra property,

∥Ξ1∥s−1 = ∥
2πτAµ
Lε

H((χεθεα)θεαWs.t.,ε ⋅ t̂ε)∥
s−1

≤ c∥θε∥2
s∥Ws.t.,ε ⋅ t̂ε∥s−1.
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An estimate for Ws.t.,ε ⋅ t̂ε can be proved along the same lines as in Lemma 6 and Remark 7. This
implies that ∥Ξ1∥s−1 is bounded in terms of d̄1. For Ξ2, we have

∥Ξ2∥s−1 = ∥−
2πτAµ
Lε

H((χεθεα)ms.t.,ε ⋅ n̂)ε∥
s−1

≤ c∥θε∥s(1 + ∥θε∥s−1∥)ms.t.,ε∥s−1.

An estimate for ms.t,ε (and also an estimate for m̃ε, although it is not needed for Ξ2) can be proven
completely analogously to (32), and these imply that Ξ2 is bounded in Hs−1 in terms of d̄1.

For Ξ3 and Ξ4, we need to use the commutator estimates of Lemma 4. We begin with the estimate
for Ξ3 ∶

∥Ξ3∥s−1 = ∥−
4π3τAµ

(Lε)3
[H,χεθεα]H(χεθεααα)∥

s−1

≤ c∥χεθεα∥s−1∥χεθεααα∥s−3 ≤ c∥θε∥2
s ≤ cd̄2

1.

(Notice that we used Lemma 4 with n = s− 1 and k = 2; the lemma requires n ≥ 2k, so we must have
s ≥ 5.) We turn to Ξ4 ∶

∥Ξ4∥s−1 = ∥−
4π3τAµ

(Lε)3
∂−1
α [H,χεθεαα]H(χεθεααα)∥

s−1

≤ c ∥[H,χεθεαα]H(χεθεααα)∥s−2

≤ c∥χεθεαα∥s−2∥χεθεααα∥s−3 ≤ cd̄2
1.

Here, we used Lemma 4 with n = s − 2 and k = 1.
We have the following definition of Ξ5 ∶

Ξ5 = −
2πτAµ
Lε

∂−1
α H ((χεθεαα)(−θεα(Ws.t.,ε ⋅ t̂ε) +ms.t.,ε ⋅ n̂ε)) .

This can be bounded in terms of d̄1 because of the presence of the ∂−1
α operator, and also because

of the previously discussed bounds for Ws.t.,ε ⋅ t̂ε and ms.t.,ε.
We next have the following, which again uses Lemma 4:

∥Ξ6∥s−1 = ∥−
2πτAµ
Lε

∂−1
α [H,U s.t.,ε]χεθεαα∥

s−1
≤ c ∥[H,U s.t.,ε]χεθεαα∥s−2

≤ c∥U s.t.,ε∥s−2∥θε∥s.

Using (48), we can easily bound ∥U s.t.,ε∥s−2 in terms of d̄1, so we can thus bound Ξ6 in terms of d̄1

as well.
Both of Ξ7 and Ξ8 involve kε. To begin to estimate these, we note that we can write

Φ(W̃ε)∗ = 1
2i
H

⎛
⎝
γ̃[θε]
zεd,α

⎞
⎠
+K[zεd](γ̃[θε]),

similarly to the formula (28). Using Lemma 1 and Lemma 6, and the definition Ũε = W̃ε ⋅ n̂ε, we
see that Ũε is bounded in Hs in terms of d̄1. From (45), which is the definition of kε, we see then
that kε is bounded in Hs in terms of d̄1. For Ξ7, we can use Lemma 4 again, yielding the following:

∥Ξ7∥s−1 = ∥[H,kε]χεθεαα∥s−1 ≤ c∥kε∥s−1∥θε∥s.
Given the above discussion on the boundedness of kε, we see that Ξ7 is bounded in terms of d̄1.
Next, we see from the above discussion and the following definition of Ξ8 that it is bounded in Hs−1

in terms of d̄1 ∶
Ξ8 =H(kεαχεθεα).

We will stop providing details at this point, but the rest of the proof for Υε
4, and indeed, the rest

of the proof of the lemma, follows in the same fashion. ∎
As in Section 2, we let the energy E be defined as

E(t) = 1
2 ∫X

(θε(α, t))2 + (∂sαθε(α, t))2 dα.
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Of course, this energy is the square of a norm for θε in the space Hs, and this norm is equivalent to
the usual one. We are now ready for the energy estimate:

Lemma 9. Let τ > 0 and ε > 0 be given. Let θε ∈ C([0, T ];O) solve (40), where T may depend on
both ε and τ. Then, there exists constants c1 > 0, c2 > 0, and c3 > 0 depending only on s, d̄1, d̄2, and
d̄3, and there exists C̄ > 0 which can also depend on τ, such that for all t ∈ [0, T ], we have

(61)
dE

dt
≤ c1 exp{c2E} + C̄E − c3τ ∫

X
(Λ3/2∂sαχεθ

ε)2 dα.

Proof: Clearly, we have
dE

dt
= ∫

X
θεθεt + (∂sαθε)∂sαθεt dα = ∫

X
θεθεt + (∂sαθε)∂s−2

α θεαα,t dα.

Since s has been taken to be sufficiently large, we can see that ∥θεt ∥0 is bounded in terms of the
energy; so,

(62) ∫
X
θεθεt dα ≤ c1 exp{c2E}.

Using (58), and using that fact that χε is self-adjoint, we calculate the following:

(63)

∫
X
(∂sαθε)∂s−2

α θεαα,t dα = − 4π3τ

(Lε)3 ∫X
(∂sαχεθε)(∂sαΛ3χεθ) dα + ∫

X
(∂sαχεθε)∂s−2

α (Υε
5Λ(χεθεαα)) dα

+ ∫
X
(∂sαχεθε)∂s−2

α (Υε
6χεθ

ε
ααα) dα + ∫

X
(∂sαχεθε)∂s−2

α Υε
7 dα.

We estimate each of the integrals on the right-hand side of (63). To begin, we notice from Lemma
8 that we can easily estimate the last integral on the right-hand side of (63):

(64) ∫
X
(∂sαχεθε)∂s−2

α Υε
7 dα ≤ ∥θε∥s∥Υε

7∥s−2 ≤ c1 exp{c2E}.

For the third integral on the right-hand side of (63), we use the product rule in order to expand
∂s−2
α (Υε

6χεθ
ε
ααα) ∶

(65) ∫
X
(∂sαχεθε)∂s−2

α (Υε
6χεθ

ε
ααα) dα = ∫

X
Υε

6(∂sαχεθε)(∂s+1
α χεθ

ε) dα

+
s−2

∑
j=1

(s − 2
j

)∫
X
(∂sαχεθε)(∂jαΥε

6)(∂s+1−j
α χεθ

ε) dα.

The first integral on the right-hand side of (65) can be integrated by parts, since (∂sαχεθε)∂s+1
α χεθ

ε =
1
2
∂α ((∂sαχεθε)2) . After performing this integration by parts, the resulting integral is bounded in

terms of the energy. Furthermore, all of the integrals in the sum on the right-hand side of (65) are
bounded in terms of the energy. For both of these bounds, we have used Lemma 8. So, we have
established

(66) ∫
X
(∂sαχεθε)∂s−2

α (Υε
6χεθ

ε
ααα) dα ≤ c1 exp{c2E}.

The other two integrals on the right-hand side of (63) require more careful attention. We begin
with the second of these, which we again expand with the product rule:

(67) ∫
X
(∂sαχεθε)∂s−2

α (Υε
5Λ(χεθεαα)) dα = ∫

X
Υε

5(∂sαχεθε)Λ(∂sαχεθε) dα

+
s−2

∑
j=1

(s − 2
j

)∫
X
(∂sαχεθε)(∂jαΥε

5)Λ(∂s−jα χεθ
ε) dα.
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For the first integral on the right-hand side of (67), we estimate it with Young’s Inequality:

∫
X

Υε
5(∂sαχεθε)Λ(∂sαχεθε) dα ≤ 1

2 ∫X
(Υε

5)2(∂sαχεθε)2 dα + 1
2 ∫X

(∂s+1
α χεθ

ε)2 dα.

By Lemma 8, the first of these is bounded in terms of the energy; furthermore, all of the integrals
in the sum on the right-hand side of (67) are bounded in terms of the energy. These considerations
yield the following bound:

(68) ∫
X
(∂sαχεθε)∂s−2

α (Υε
5Λ(χεθεαα)) dα ≤ c1 exp{c2E} + 1

2 ∫X
(∂s+1
α χεθ

ε)2 dα.

We now consider the first integral on the right-hand side of (63). We simply rewrite this integral,
using the fact that the operator Λ3/2 is self-adjoint:

(69) − 4π3τ

(Lε)3 ∫X
(∂sαχεθε)∂s−2

α Λ3(χεθε) dα = − 4π3τ

(Lε)3 ∫X
(Λ3/2∂sαχεθ

ε)2 dα.

We now add the inequalities (64), (66), (68), and (69), using these with (63). This yields the
inequality

(70) ∫
X
(∂sαθε)∂s−2

α θεαα,t dα ≤ c1 exp{c2E} + ∫
X

(− 4π3τ

(Lε)3
(Λ3/2(∂sαχεθε))2) + 1

2
(∂α∂sαχεθε)2 dα.

Similarly to the estimate of Case 3 of the example in Section 2, we let v = ∂sαχεθε, and we rewrite
the integral on the right-hand side of (70) by using the Plancherel theorem. We also add (70) with
(62):

dE

dt
≤ c1 exp{c2E} +

∞

∑
ξ=−∞

(− 4π3τ

(Lε)3
∣ξ∣3 + 1

2
∣ξ∣2) ∣v̂(ξ)∣2.

From the definition of the open set O, we know Lε < d̄2, and therefore

− 4π3τ

(Lε)3
< −4π3τ

d̄3
2

.

Now, there exists C̄(τ) > 0 such that for all ξ ∈ Z, we have

−2π3τ

d̄3
2

∣ξ∣3 + 1
2
∣ξ∣2 ≤ C̄(τ).

Notice that by the Plancherel theorem and the definition of E, and by the inequality ∥χεθε∥s ≤ ∥θε∥s,
the sum ∑∞ξ=−∞ ∣v̂(ξ)∣2 is bounded by 2E. We use the Plancherel theorem once more, and we conclude
that we have proven that

dE

dt
≤ c1 exp{c2E} + 2C̄(τ)E − 2π3τ

d̄3
2
∫
X
(Λ3/2∂sαχεθ

ε)2 dα.

This completes the proof of the lemma. ∎

Remark 10. While the constants c1 and c2 are independent of τ, it is clear that limτ→0+ C̄(τ) = +∞.
Therefore, the present estimate is certainly not uniform in τ.

Remark 11. The integral on the right-hand side of (61) demonstrates a version of the expected
parabolic smoothing for this problem. By integrating (61) in time, because of the presence of this
integral, we see that the mollified solution of the approximate evolution equation, χεθε, is in fact
in the space L2([0, T ];Hs+3/2), with the norm in this space bounded independently of ε. Of course,
χεθ

ε is in the space Hs+3/2 pointwise in time because of the presence of the mollifier, but without
this estimate, the norm in Hs+3/2 would depend badly on ε. (We mention that we have not yet
shown that T can be taken to be independent of ε, but we will do this next.)
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5.5. Existence of solutions with τ > 0. Thus far, we have proved the existence of a solution θε

to the initial value problem associated to the mollified evolution equation, for any ε > 0, and this
solution exists on a time interval [0, T ε]. Furthermore, we have proved that the time derivative of
the Hs-norm of θε is bounded, independently of ε. Our next task is to combine these facts to find
that the solutions θε all exist on a common time interval; this is the content of our next lemma.

Lemma 10. Let θε be as in Lemma 7. There exists T∗ > 0 such that for all ε > 0, θε is a solution
of (40) on the time interval [0, T∗], and θε ∈ C([0, T∗];O) ∩C1([0, T∗];Hs−3).
Proof: By the continuation theorem for autonomous differential equations on Banach spaces (see
Theorem 3.3 of [42]), the solution θε can be continued so long as it does not leave the set O. There
are three conditions in (60) defining the set O, and we must check that these cannot be violated
arbitrarily quickly.

For any given ε > 0, define T ε∗ to be the maximal time of existence for θε in the set O. Assume that
the solutions can leave the set O arbitrarily quickly. This means there exists a sequence εn > 0 such
that εn → 0 and such that T εn∗ → 0 as n→∞. The uniform bound of the previous section, however,
immediately implies that ∥θε∥s cannot reach the value d̄1 arbitrarily fast (that is, if it could reach the
value d1 arbitrarily fast, then the time derivative of E would have to be able to become arbitrarily
large, which is ruled out by the estimate). Similarly, if Lε were to become equal to d̄2 arbitrarily
fast, then the time derivative, Lεt , would need to be arbitrarily large, but again, this is not the case.
Similarly, the energy also controls the time derivative of the chord-arc quantity, q1, so the chord-arc
condition in (60) cannot be violated arbitrarily fast. Such a sequence εn is therefore seen to be
impossible. We conclude that there exists T∗ > 0 such that for all ε > 0, we have θε ∈ C([0, T∗],O).
∎
Remark 12. Following up on Remark 11, we see that the mollified solutions of the approximate
evolution equation, χεθε, are bounded in L2([0, T∗];Hs+3/2), and the bound is uniform with respect
to ε.

We are now able to prove the existence of a limiting solution, θ.

Theorem 11. Let θ0 ∈ O satisfy ⟪sin(θ0)⟫ = 0. Let T∗ > 0 be as in Lemma 10. Then there exists
θ ∈ C([0, T∗]; Ō) ∩C1([0, T∗];Hs−3) such that θ(⋅,0) = θ0 and such that θ satisfies (20).

Proof: From the uniform bound on the Hs-norm of the solutions in the definition of O, we con-
clude that ∣θεt ∣∞ and ∣θεα∣∞ are uniformly bounded, with respect to both ε and t, over the interval
[0, T∗]. Therefore, θε forms an equicontinuous family. By the Arzela-Ascoli theorem, there exists
a subsequence (which we do not relabel) and a limit, θ, such that θε → θ in C(X × [0, T∗]). This
implies θε → θ in C([0, T ];H0), and using the uniform Hs-estimate together with the elementary
interpolation inequality (22), this implies θε → θ in C([0, T∗];Hs′), for any s′ satisfying 0 ≤ s′ < s.

Next, we establish that the limiting solution satisfies the unmollified evolution equation. Recall
that Bε is defined in (41), and that B is defined to be the right-hand side of (20). We write

θε(α, t) = θ0(α) + ∫
t

0
θεt (α, s) ds = θ0(α) + ∫

t

0
Bε(α, s) + µε(s) ds.

Having established convergence in Hs′ for sufficiently large s′, we are able to pass to the limit in
this equation, finding

θ(α, t) = θ0(α) + ∫
t

0
lim
ε→0

θεt (α, s) ds = θ0(α) + ∫
t

0
B + lim

ε→0
µε ds.

We give the name µ to the limit of µε; considering the discussion at the end of Section 5.1, we see
that

µ = −∫
2π

0 cos(θ)B dα

4π2L
= Lt

4π2L2 ∫
2π

0
sin(θ) dα.
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As discussed at the end of Section 5.1, we recall that for all ε > 0, we have ∫
2π

0 sin(θε) dα = 0. We
can thus pass to the limit to find ∫

2π
0 sin(θ) dα = 0. We conclude that µ = 0. This implies that the

limit, θ, satisfies the appropriate evolution equation, θt = B.
Finally, we remark on the highest regularity. The solutions of the mollified equation are in the

space Hs at each time in [0, T∗], uniformly bounded with respect to ε. This means that at each time,
there is a subsequence which converges weakly in Hs, and this limit must be θ. Therefore, θ is in Hs

pointwise in time. What remains is to show that θ ∈ C([0, T ];Hs); we do not include the details,
but this can be done by adapting the corresponding argument for regularity of solutions for the
Navier-Stokes equations in Chapter 3 of [42]. The steps are to first show that θ is weakly continuous
in time with values in Hs; this follows easily from the uniform bound and the strong continuity in
Hs′ . Then, it is shown that the solution is strongly right-continuous in time at t = 0; this follows from
the energy estimate and Fatou’s Lemma. The final step is to use parabolic smoothing; in Remark 12,
we see that χεθε is uniformly bounded in the space L2([0, T∗];Hs+3/2). Since this is a Hilbert space,
we see that our subsequence of χεθε has a subsequence with a weak limit in this space, and this weak
limit must be θ. The existence theory can then be repeated in higher regularity spaces starting from
almost any positive time, t, with initial data θ(⋅, t). Using the uniqueness theorem (which is Theorem
12 below), the solution starting from time t and the solution starting from time zero must be the
same. It can then be concluded that the solution starting from time t is continuous in Hs (since
Hs would no longer be the highest regularity), and we are able to do this for any arbitrarily small
value of t. Together with the right-continuity at time zero, this argument implies θ ∈ C([0, T∗];Hs).
In addition to [42], we remark that the author has recently used this same argument for highest
regularity in the papers [4] and [10]. ∎

5.6. Uniqueness and continuous dependence with τ > 0.

Theorem 12. Let θ0 ∈ O and θ1 ∈ O be given, and assume that ⟪sin(θi)⟫ = 0 for i ∈ {0,1}. The
solution of the initial value problem (20) with θ(⋅,0) = θ0 is unique. Moreover, if T > 0 such that
θ ∈ C([0, T ];O) is the solution corresponding to data θ0 and if θ′ ∈ C([0, T ];O) is the solution
corresponding to data θ1, then there exists c > 0 such that

sup
t∈[0,T ]

∥θ − θ′∥1 ≤ c∥θ0 − θ1∥1.

Remark 13. The proof of this theorem is the same as the proof of Theorem 14 below, and so we do
not include it here. In Theorem 14, we prove an estimate for the difference of two solutions, where
the solutions correspond to two different values of the surface tension parameter. In the present
case, the solutions would correspond to two different pieces of initial data. The estimate of the proof
of Theorem 14 is more general, and thus implies the present result. Theorem 14 is for the H1 norm
of the difference of two solutions; the continuous dependence result of Theorem 12 can easily be
extended to higher regularity by interpolation.

6. The zero surface tension limit

We revisit the energy estimate of Section 5.4 in the case that the stability condition is satisfied.
This will allow us to show that the solutions found above exist on a uniform time interval. We will
then be able to take the limit as τ vanishes.

6.1. Uniform time of existence. We define another open set, Ok; this will be a subset of our
previous open set, O. We let d̄4 > 0 be given. Then, we make the definition

Ok = {f ∈ O ∶ ∀α, k[f](α) < −d̄4}.
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This inequality, that k be negative and uniformly bounded away from zero, is the stability condition
that we discussed in the introduction; it is the nonlinear generalization of the condition of Saffman
and Taylor [45]. We repeat the previous energy estimate, considering now θ ∈ Ok, and considering
sufficiently small τ. Let us be precise about the τ to be considered. For any f ∈ Ok, we have the
bounds (60), since Ok ⊆ O. Considering the formula (46) and the definition of Υε

5 in (59), we see
that if θε ∈ Ok, then since k[θε] < −d̄4, and since U s.t,ε is bounded in terms of θε (uniformly in ε)
there exists τ∗ ∈ (0,1) such that for all τ ∈ (0, τ∗), we have the pointwise estimate Υε

5 < − d̄42 < 0.

Theorem 13. Let τ∗ be as above. Let θ0 ∈ Ok be given, such that ⟪sin(θ0)⟫ = 0. Then there exists
T > 0 such that for all τ ∈ (0, τ∗), the solution θτ of the initial value problem given by (20) and the
condition θτ(⋅,0) = θ0 exists on [0, T ], with θτ ∈ C([0, T ]; Ōk) ∩C1([0, T ];Hs−3).

Proof: We perform the energy estimate in the same way as before, except for the term which
includes Υε

5. The exact nature of the difference is that previously, when estimating (67), we had
used Young’s Inequality, and now we will instead use the estimate Υε

5 < − d̄4
2
. We begin by naming

the following integral I, and by using the formula Λ =H∂α ∶

I = ∫
X

Υε
5(∂sαχεθε)Λ(∂sαχεθε) dα = ∫

X
Υε

5(∂sαχεθε)∂αH(∂sαχεθε) dα.

Now, we write Υε
5 = − (

√
−Υε

5)
2
∶

I = −∫
X

(
√
−Υε

5∂
s
αχεθ

ε)(
√
−Υε

5∂αH∂
s
αχεθ

ε) dα.

We bring a factor of
√
−Υε

5 through ∂α ∶

I = −∫
X

(
√
−Υε

5∂
s
αχεθ

ε)∂α (
√
−Υε

5H∂
s
αχεθ

ε) dα − 1
2 ∫X

Υε
5,α(∂sαχεθε)(H∂sαχεθε) dα.

Notice that the second integral on the right-hand side is bounded in terms of the energy. For the
first integral on the right-hand side, we now pull a factor of

√
−Υε

5 through the Hilbert transform
as well:

I = −∫
X

(
√
−Υε

5∂
s
αχεθ

ε)Λ(
√
−Υε

5∂
s
αχεθ

ε) dα + ∫
X

(
√
−Υε

5∂
s
αχεθ

ε)∂α[H,
√
−Υε

5](∂
s
αχεθ

ε) dα

− 1
2 ∫X

Υε
5,α(∂sαχεθε)(H∂sαχεθε) dα.

Now, the second integral on the right-hand side is also bounded in terms of the energy, because of the
smoothing properties of these commutators. The first integral on the right-hand side, meanwhile,
is non-positive; this is an important change from the previous estimate. Therefore, we are able to
estimate I as

I ≤ c1 exp{c2E} − ∫
X

(Λ1/2 (
√
−Υε

5∂
s
αχεθ

ε))
2
dα.

This estimate completely obviates the need for Young’s inequality, and (70) is replaced by

∫
X
(∂sαθε)∂s−2

α θεαα,t dα ≤ c1 exp{c2E} − ∫
X

4π3τ

(Lε)3
(Λ3/2(∂sαχεθε))2 dα

− ∫
X

(Λ1/2 (
√
−Υε

5∂
s
αχεθ

ε))
2
dα.

As before, since Lε < d̄2, we have the simple inequality

− 4π3

(Lε)3
< −4π3

d̄3
2

.
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We therefore conclude that

(71)
dE

dt
≤ c1 exp{c2E} − 4π3τ

d̄3
2
∫
X
(Λ3/2∂sαχεθ

ε)2 dα − ∫
X

(Λ1/2 (
√
−Υε

5∂
s
αχεθ

ε))
2
dα,

where c1 and c2 are independent of τ ∈ (0, τ∗). ∎

Remark 14. As in Remark 11 and Remark 12, we can see parabolic smoothing from this estimate,
although we now have two different ways to see this. With τ > 0, we consider the first integral on
the right-hand side of (71), and we conclude that χεθε is in L2([0, T∗];Hs+3/2), with the norm in
this space bounded independently of ε. Our estimate of this norm depends badly on τ. We are able
to see smoothing independent of τ, however, if we use the second integral on the right-hand side
of (71). We can conclude that χεθε is in L2([0, T∗];Hs+1/2), with the norm in this space bounded
independently of ε and independently of τ.

6.2. Cauchy sequence as τ → 0. We now consider the behavior of solutions as τ vanishes. We
therefore need to consider solutions with different values of the parameter τ, and we will use super-
scripts for this purpose. That is, given some τ > 0, the solution of the initial value problem for the
non-mollified equation (20) will be denoted by θτ , and related quantites based on θτ will be denoted,
for example, as Wτ or Lτ . In our next theorem, we demonstrate that as τ vanishes, any sequence
of θτ forms a Cauchy sequence in the space C([0, T ];H1).

Theorem 14. Let θ0 ∈ Ok be given, such that ⟪sin(θ0)⟫ = 0. Let T > 0 be as in Theorem 13. Let τ
and τ ′ be in (0, τ∗). Let θτ and θτ

′

be the corresponding solutions of the initial value problem (20)
with initial data θ0, with the solutions valid over the time interval [0, T ], as in Theorem 13. For any
η > 0, there exists δ > 0 such that if ∣τ − τ ′∣ < δ, then

sup
t∈[0,T ]

∥θτ − θτ
′

∥1 < η.

Proof: We need to show that we can make ∥θτ(⋅, t) − θτ
′

(⋅, t)∥1 arbitrarily small, uniformly in
t ∈ [0, T ], by taking τ and τ ′ sufficiently close together. In order to estimate ∥θτ − θτ

′

∥1, we first
need a good expression for (θτ −θτ

′

)t. To this end, we begin by substituting from (18), and we write
the result as

(θτ − θτ
′

)t = B1 +B2 +B3 +B4 +B5 +B6;
each of these Bi correspond to one of the six terms on the right-hand side of (18). We will now write
each of these out and manipulate each to get it to a useful form.

We begin with B1. We have

B1 = −
4π3τ

(Lτ)3
Λ3(θτ) + 4π3τ ′

(Lτ ′)3
Λ3(θτ

′

).

We add and subtract:

B1 = −
4π3(τ − τ ′)

(Lτ)3
Λ3(θτ) − 4π3τ ′ ( 1

(Lτ)3
− 1

(Lτ ′)3
)Λ3(θτ) − 4π3τ ′

(Lτ ′)3
Λ3(θτ − θτ

′

).

We turn to B2. We write the second term on the right-hand side of (18) as

2π
L
H ({−R cos(θ)

2
−AµU} θα) =H(kθα) −

2πτAµ
L

H(U s.t.θα).

We then have our first expression for B2, namely

B2 =H(kτθτα) −H(kτ
′

θτ
′

α ) −
2πτAµ
Lτ

H(U s.t.,τθτα) +
2πτ ′Aµ
Lτ ′

H(U s.t.,τ ′θτ
′

α ).
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Of course, we add and subtract:

B2 =H((kτ − kτ
′

)θτα) +H(kτ
′

(θτα − θτ
′

α ))

−
2π(τ − τ ′)Aµ

Lτ
H(U s.t.,τθτα) − 2πτ ′Aµ ( 1

Lτ
− 1
Lτ ′

)H(U s.t.,τθτα)

−
2πτ ′Aµ
Lτ ′

H((U s.t.,τ −U s.t.,τ ′)θτα) −
2πτ ′Aµ
Lτ ′

H(U s.t.,τ ′(θτα − θτ
′

α )).

We rewrite the term with U s.t.,τ −U s.t.,τ ′ by using (37):

B2 =H((kτ − kτ
′

)θτα) +H(kτ
′

(θτα − θτ
′

α ))

−
2π(τ − τ ′)Aµ

Lτ
H(U s.t.,τθτα) − 2πτ ′Aµ ( 1

Lτ
− 1
Lτ ′

)H(U s.t.,τθτα)

−
2πτ ′Aµ
Lτ ′

H(U s.t.,τ ′(θτα − θτ
′

α )) −
2πτ ′Aµ
Lτ ′

H((Qτ −Qτ
′

)θτα)

−
4π3τ ′Aµ

Lτ ′
( 1
(Lτ)2

− 1
(Lτ ′)2

)H(θταH(θταα)) −
4π3τ ′Aµ

(Lτ ′)3
H(θταH(θταα − θτ

′

αα)).

To get our final form for B2, we now pull some factors through Hilbert transforms, incurring com-
mutators:

B2 =H((kτ − kτ
′

)θτα) + kτ
′

H(θτα − θτ
′

α )

−
2π(τ − τ ′)Aµ

Lτ
H(U s.t.,τθτα) − 2πτ ′Aµ ( 1

Lτ
− 1
Lτ ′

)H(U s.t.,τθτα)

−
2πτ ′Aµ
Lτ ′

U s.t.,τ ′H(θτα − θτ
′

α ) −
2πτ ′Aµ
Lτ ′

H((Qτ −Qτ
′

)θτα)

−
4π3τ ′Aµ

Lτ ′
( 1
(Lτ)2

− 1
(Lτ ′)2

)H(θταH(θταα)) +
4π3τ ′Aµ

(Lτ ′)3
θτα(θταα − θτ

′

αα)

+ [H,kτ
′

](θτα − θτ
′

α ) −
2πτ ′Aµ
Lτ ′

[H,U s.t.,τ ′](θτα − θτ
′

α ) −
4π3τ ′Aµ

(Lτ ′)3
[H,θτα]H(θταα − θτ

′

αα).

For B3, we begin by recalling the definition

γ = 2πτ
L
θαα + γ̃.

Using this, we can write

−
2π2Aµ

L2
P(γθα) = −

4π3Aµτ

L3
P(θααθα) −

2π2Aµ

L2
P(γ̃θα),

and we note that the mean of θααθα is zero (since it is a perfect derivative). So, we have the following
for B3 ∶

B3 = −
4π3Aµτ

(Lτ)3
θταθ

τ
αα +

4π3Aµτ
′

(Lτ ′)3
θτ

′

α θ
τ ′

αα −
2π2Aµ

(Lτ)2
P(γ̃τθτα) +

2π2Aµ

(Lτ ′)2
P(γ̃τ

′

θτ
′

α ).
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Once again, we add and subtract:

B3 = −
4π3Aµ(τ − τ ′)

(Lτ)3
θταθ

τ
αα − 4π3Aµτ

′ ( 1
(Lτ)3

− 1
(Lτ ′)3

) θταθταα

−
4π3Aµτ

′

(Lτ ′)3
(θτα − θτ

′

α )θταα −
4π3Aµτ

′

(Lτ ′)3
θτ

′

α (θταα − θτ
′

αα) − 2π2Aµ ( 1
(Lτ)2

− 1
(Lτ ′)2

)P(γ̃τθτα)

−
2π2Aµ

(Lτ ′)2
P((γ̃τ − γ̃τ

′

)θτα) −
2π2Aµ

(Lτ ′)2
P(γ̃τ

′

(θτα − θτ
′

α )).

We rewrite the last term on the right-hand side, by using the formula Pf = f − ⟪f⟫ ∶

B3 = −
4π3Aµ(τ − τ ′)

(Lτ)3
θταθ

τ
αα − 4π3Aµτ

′ ( 1
(Lτ)3

− 1
(Lτ ′)3

) θταθταα

−
4π3Aµτ

′

(Lτ ′)3
(θτα − θτ

′

α )θταα −
4π3Aµτ

′

(Lτ ′)3
θτ

′

α (θταα − θτ
′

αα) − 2π2Aµ ( 1
(Lτ)2

− 1
(Lτ ′)2

)P(γ̃τθτα)

−
2π2Aµ

(Lτ ′)2
P((γ̃τ − γ̃τ

′

)θτα) −
2π2Aµ

(Lτ ′)2
γ̃τ

′

(θτα − θτ
′

α ) +
2π2Aµ

(Lτ ′)2
⟪γ̃τ

′

(θτα − θτ
′

α )⟫.

It is helpful to rewrite V −W ⋅ t̂ before beginning to give the formula for B4. We use (7) for this,
finding

V −W ⋅ t̂ = ⟪V −W ⋅ t̂⟫ + ∂−1
α (Lt

2π
−Wα ⋅ t̂) .

From previous considerations, we have the formula

Wα ⋅ t̂ = −
2π2τ

L2
H(θααθα) −

π

L
H(γ̃θα) +m ⋅ t̂.

We observe that we can calculate ∂−1
α H(θααθα) exactly, and we find

V −W ⋅ t̂ = ⟪V −W ⋅ t̂⟫ + π
2τ

L2
H(θ2

α) + ∂−1
α (Lt

2π
+ π
L
H(γ̃θα) −m ⋅ t̂) .

We then write B4 as

B4 =
2π
Lτ

(V −W ⋅ t̂)τθτα −
2π
Lτ ′

(V −W ⋅ t̂)τ
′

θτ
′

α

= 2π ( 1
Lτ

− 1
Lτ ′

) (V −W ⋅ t̂)τθτα +
2π
Lτ ′

(⟪V −W ⋅ t̂⟫τ − ⟪V −W ⋅ t̂⟫τ
′

) θτα

+ 2π
Lτ ′

⋅ π
2(τ − τ ′)
(Lτ)2

(H((θτα)2))θτα +
2π3τ ′

Lτ ′
( 1
(Lτ)2

− 1
(Lτ ′)2

)(H((θτα)2))θτα

+ 2π3τ ′

(Lτ ′)3
(H ((θτα)2 − (θτ

′

α )2)) θτα

+ 2π
Lτ ′

∂−1
α

⎡⎢⎢⎢⎣
(Lt

2π
+ π
L
H(γ̃θα) −m ⋅ t̂)

τ

− (Lt
2π

+ π
L
H(γ̃θα) −m ⋅ t̂)

τ ′⎤⎥⎥⎥⎦
θτα

+ 2π
Lτ ′

(V −W ⋅ t̂)τ
′

(θτα − θτ
′

α ).
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We rewrite this by factoring (θτα)2 − (θτ
′

α )2, and then pulling θτα + θτ
′

α through the Hilbert transform:

B4 = 2π ( 1
Lτ

− 1
Lτ ′

) (V −W ⋅ t̂)τθτα +
2π
Lτ ′

(⟪V −W ⋅ t̂⟫τ − ⟪V −W ⋅ t̂⟫τ
′

) θτα

+ 2π
Lτ ′

⋅ π
2(τ − τ ′)
(Lτ)2

(H((θτα)2))θτα +
2π3τ ′

Lτ ′
( 1
(Lτ)2

− 1
(Lτ ′)2

)(H((θτα)2))θτα

+ 2π3τ ′

(Lτ ′)3
θτα(θτα + θτ

′

α )H (θτα − θτ
′

α )

+ 2π
Lτ ′

∂−1
α

⎡⎢⎢⎢⎣
(Lt

2π
+ π
L
H(γ̃θα) −m ⋅ t̂)

τ

− (Lt
2π

+ π
L
H(γ̃θα) −m ⋅ t̂)

τ ′⎤⎥⎥⎥⎦
θτα

+ 2π
Lτ ′

(V −W ⋅ t̂)τ
′

(θτα − θτ
′

α ) + 2π3τ ′

(Lτ ′)3
θτα[H,θτα + θτ

′

α ](θτα − θτ
′

α ).

We simply write B5 and B6 as follows:

B5 =
2π
Lτ

mτ ⋅ n̂τ − 2π
Lτ ′

mτ ′ ⋅ n̂τ
′

,

B6 = −
2π3Aµ

(Lτ)3
H(mτ ⋅ t̂τ) +

2π3Aµ

(Lτ ′)3
H(mτ ′ ⋅ t̂τ

′

).

We now want to collect those terms which have a similar character together. In particular, we
want to write (θτ − θτ

′

)t as

(72) (θτ − θτ
′

)t = −
4π3τ ′

(Lτ ′)3
Λ3(θτ − θτ

′

) + τ ′Υ8(θταα − θτ
′

αα) +Υ9Λ(θτ − θτ
′

)

+Υ10(θτα − θτ
′

α ) + (τ − τ ′)Υ11 +Υ12.

We now give the formulas for each of Υ8, Υ9, Υ10, Υ11, and Υ12. To begin, we see that there is one
term from B2 and one term from B3 which constitute Υ8 ∶

Υ8 =
4π3Aµ

(Lτ ′)3
θτα −

4π3Aµ

(Lτ ′)3
θτ

′

α =
4π3Aµ

(Lτ ′)3
(θτα − θτ

′

α ).

For Υ9, we collect two terms from B2 and one term from B4 ∶

Υ9 = kτ
′

−
2πτ ′Aµ
Lτ ′

U s.t.,τ ′ + 2π3τ ′

(Lτ ′)3
θτα(θτα + θτ

′

α ).

For Υ10, we collect two terms from B3 and one term from B4 ∶

Υ10 = −
4π3Aµτ

′

(Lτ ′)3
θταα −

2π2Aµ

(Lτ ′)2
γ̃τ

′

+ 2π
Lτ ′

(V −W ⋅ t̂)τ
′

.

For Υ11, we collect one term each from B1, B2, B3, and B4 ∶

Υ11 = −
4π3

(Lτ)3
Λ3(θτ) −

2πAµ
Lτ

H(U s.t.,τθτα) −
4π3Aµ

(Lτ)3
θταθ

τ
αα +

2π3

Lτ ′(Lτ)2
θταH((θτα)2).

Since θτ and θτ
′

are both in the set Ok, and since s is sufficiently large, we see that there exists
M > 0 such that for i ∈ {8,9,10,11} and for j ∈ {0,1,2}, we have the estimate

∣∂jαΥi∣∞ ≤M.

Of course, this M is related to the constant d̄1 from (60).
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Of course, Υ12 consists of all remaining terms; we will not list them explicitly now, but we do
write out the definition below in (79). We need to establish the following estimate for Υ12 ∶

(73) ∥Υ12∥1 ≤ c∥θτ − θτ
′

∥1.

In order to establish this bound, we need to establish corresponding bounds for related quantities,
such as Lτ −Lτ

′

, kτ −kτ
′

, and so on. We will establish (73) in Lemma 16 following the current proof;
for the moment, we will assume that it holds.

We next differentiate (72), finding the following:

(74) (θτ − θτ
′

)α,t = −
4π3τ ′

(Lτ ′)3
Λ3(θτα − θτ

′

α ) + τ ′Υ8(θτααα − θτ
′

ααα) +Υ9Λ(θτα − θτ
′

α )

+ (Υ10 + τ ′Υ8,α)(θταα − θτ
′

αα) +Υ9,αΛ(θτ − θτ
′

) +Υ10,α(θτα − θτ
′

α ) + (τ − τ ′)Υ11,α +Υ12,α.

We are ready to make our estimate. Define Ed = 1
2
∥θτ − θτ

′

∥2
1,

Ed =
1
2 ∫X

(θτ − θτ
′

)2 + (θτα − θτ
′

α )2 dα.

We differentiate this with respect to time:
dEd
dt

= ∫
X
(θτ − θτ

′

)(θτ − θτ
′

)t + (θτα − θτ
′

α )(θτα,t − θτ
′

α,t) dα.

We first use (74), and we write

∫
X
(θτα − θτ

′

α )(θτα,t − θτ
′

α,t) dα = Z1 +Z2 +Z3 +Z4 +Z5 +Z6 +Z7 +Z8,

where each of the Zi terms corresponds to one of the eight terms on the right-hand side of (74).
We can immediately bound Z5, Z6, and Z8 (using (73) for Z8):

Z5 +Z6 +Z8 ≤ cEd.
We also can immediately bound Z7 ∶

Z7 ≤ c∣τ − τ ′∣E1/2
d .

To bound Z4, we simply integrate by parts once, and we then find

Z4 ≤ cEd.
Of course, Z1, Z2, and Z3 must be treated more carefully. We begin by rearranging Z1 using the

self-adjointedness of powers of Λ ∶

Z1 = −
4π3τ ′

(Lτ ′)3 ∫X
(Λ3/2(θτα − θτ

′

α ))2 dα.

By the Plancherel theorem, and using Lτ
′

< d̄2, we write this as

(75) Z1 = −
4π3τ ′

(Lτ ′)3

∞

∑
ξ=−∞

∣ξ∣3∣v̂(ξ)∣2 ≤ −4π3τ ′

d̄3
2

∞

∑
ξ=−∞

∣ξ∣3∣v̂(ξ)∣2,

where v = θτα − θτ
′

α .
For Z2, we integrate by parts once:

Z2 = −τ ′ ∫
X

Υ8(θταα − θτ
′

αα)2 dα − τ ′ ∫
X

Υ8,α(θτα − θτ
′

α )(θταα − θτ
′

αα) dα.

We integrate the second integral on the right hand side by parts once more:

Z2 = −τ ′ ∫
X

Υ8(θταα − θτ
′

αα)2 dα + τ
′

2 ∫X
Υ8,αα(θτα − θτ

′

α )2 dα.
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Note that the second integral on the right-hand side can be bounded by cEd, and that Υ8 is bounded
by a constant uniformly in time. Therefore, we may conclude

Z2 ≤ cEd +C2τ
′ ∫

X
(θταα − θτ

′

αα)2 dα.

By the Plancherel theorem, we can write this as

(76) Z2 ≤ cEd +C2τ
′

∞

∑
ξ=−∞

∣ξ∣2∣v̂(ξ)∣2,

where again v = θτα − θτ
′

α .
We add (75) and (76), finding the following:

Z1 +Z2 ≤ cEd + τ ′
∞

∑
ξ=−∞

(−4π3

d̄3
2

∣ξ∣3 +C2∣ξ∣2) ∣v̂(ξ)∣2.

There exists a constant, C̄, which is independent of τ and τ ′, such that for all ξ,

(−4π3

d̄3
2

∣ξ∣3 +C2∣ξ∣2) ≤ C̄.

Note also that ∥v∥2
0 ≤ Ed. These considerations, and another use of the Plancherel theorem, imply

Z1 +Z2 ≤ (c + τ ′C̄)Ed;

we rename constants to simply write this as Z1 +Z2 ≤ cEd.
We rewrite Z3 by adding and subtracting Υτ ′

5 ∶

(77) Z3 = ∫
X

Υτ ′

5 (θτα − θτ
′

α )Λ(θτα − θτ
′

α ) dα + ∫
X
(Υ9 −Υτ ′

5 )(θτα − θτ
′

α )Λ(θτα − θτ
′

α ) dα.

Of course, Υτ ′

5 refers to the quantity defined by (59), with τ ′ as the surface tension parameter, but
in the case ε = 0; to be perfectly clear, we write this out:

Υτ ′

5 = kτ
′

−
2πτ ′Aµ
Lτ

U s.t.,τ ′ + 4π3τ ′

(Lτ ′)3
(θτ

′

α )2.

To estimate the second integral on the right-hand side of (77), we will use the uniform bound on
Λ(θτα − θτ

′

α ), and we will also need the following estimate:

(78) ∥Υ9 −Υτ ′

5 ∥0 ≤ cE1/2
d .

To show this, we simply write out

Υ9 −Υτ ′

5 = 2π3τ ′

(Lτ ′)3
((θτα)2 + θταθτ

′

α − 2(θτ
′

α )2) .

The right-hand side can clearly be bounded in H0 by the H1 norm of θτ − θτ
′

. This implies that the
second integral on the right-hand side of (77) can be bounded by cEd.
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For the first integral on the right-hand side of (77), we again write Υτ ′

5 = −(
√
−Υτ ′

5 )2. As before,
we pass a factor of

√
−Υτ ′

5 through each of ∂α and H, in turn:

∫
X

Υτ ′

5 (θτα − θτ
′

α )Λ(θτα − θτ
′

α ) dα = −∫
X

(
√
−Υτ ′

5 (θτα − θτ
′

α ))(
√
−Υτ ′

5 ∂αH(θτα − θτ
′

α′)) dα

= −∫
X

(
√
−Υτ ′

5 (θτα − θτ
′

α ))∂α (
√
−Υτ ′

5 H(θτα − θτ
′

α′)) dα − 1
2 ∫X

(θτα − θτ
′

α )(Υτ ′

5,α)H(θτα − θτ
′

α ) dα

= −∫
X

(
√
−Υτ ′

5 (θτα − θτ
′

α ))Λ(
√
−Υτ ′

5 (θτα − θτ
′

α′)) dα

+ ∫
X

(
√
−Υτ ′

5 (θτα − θτ
′

α ))∂α [H,
√
−Υτ ′

5 ] (θτα − θτ
′

α ) dα − 1
2 ∫X

(θτα − θτ
′

α )(Υτ ′

5,α)H(θτα − θτ
′

α ) dα.

Of the three integrals on the right-hand side, the first is non-positive, while the second and third
can be bounded immediately in terms of the energy. We conclude

Z3 ≤ cEd.

Adding our estimates for all of the Zi, we conclude that there exist positive constants c1 and c2
such that

d

dt

1
2 ∫X

(θτα − θτ
′

α )2 dα ≤ c1Ed + c2∣τ − τ ′∣E1/2
d .

We could carry out the same estimates, using (72) instead of (74), and we would find that

d

dt

1
2 ∫X

(θτ − θτ
′

)2 dα ≤ c1Ed + c2∣τ − τ ′∣E1/2
d .

Together, these estimates imply
dEd
dt

≤ c1Ed + c2∣τ − τ ′∣E1/2
d .

Solving this differential inequality, we see that

Ed ≤ Ed(0)ec1t +
c2∣τ − τ ′∣(ec1t − 1)

c1
.

Together with the initial condition Ed(0) = 0, this immediately implies the conclusion of the theorem.
∎

We are now able to prove the main result of the present work, which is that the limit as surface
tension vanishes for Darcy flow with surface tension is the Darcy flow without surface tension, when
the stability condition is satisfied by the initial data.

Theorem 15. Let θ0 ∈ Ok be given, such that ⟪sin(θ0)⟫ = 0. Let T > 0 be as in Theorem 13.
For all τ ∈ (0, τ∗), let θτ be as in Theorem 13. Let s′ be given such that 0 ≤ s′ < s. There exists
θ ∈ C([0, T ]; Ōk) ∩C1([0, T ];Hs−1) such that

lim
τ→0

sup
t∈[0,T ]

∥θτ − θ∥s′ = 0.

This θ is the solution of the initial value problem (21), with initial data θ0.

Proof: From Theorem 14, we see that θτ forms a Cauchy sequence in H1 as τ → 0+. Since the
solutions θτ are bounded in Hs independently of τ, the Sobolev interpolation inequality (22) implies
that the sequence θτ is in fact a Cauchy sequence in Hs′ . Therefore, there exists a limit, θ ∈
C([0, T ]; Ōk), such that θτ → θ in Hs′ as τ → 0+.

Next, we see that θ solves the initial value problem with τ = 0. We call the right-hand side of (20)
by the name Bτ , and we call the right-hand side of (21) by the name B(τ=0). Since s is sufficiently
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large, and since θτ → θ in C([0, T ];Hs′′) for s′′ arbitrarily close to s, we see that Bτ converges
uniformly to B(τ=0). We integrate (20) in time, using the initial condition, finding

θτ(⋅, t) = θ0 + ∫
t

0
Bτ(⋅, s) ds.

Because of the uniform convergence, we can pass to the limit as τ → 0+, finding

θ(⋅, t) = θ0 + ∫
t

0
B(τ=0)(⋅, s) ds.

This implies that θ solves the initial value problem (21) with initial data θ0.
Finally, we address the highest regularity of θ. As in the proof of Theorem 11, we do not provide

the details, but the same argument works here. In particular, we are able to use parabolic smoothing;
the observations made in Remark 14 allow us to conclude that the solutions θτ are uniformly bounded
in C([0, T ];Hs) ∩ L2([0, T ];Hs+1/2). This is enough regularity with which to apply the argument
of [42], as discussed in Theorem 11. (As an alternative, the highest regularity also follows from the
well-posedness result for the problem without surface tension [2].)

∎
All that remains is to prove the bound (73).

Lemma 16. The estimate (73) holds.

Proof: We are attempting to show that ∥Υ12∥1 can be bounded by cE
1/2
d . To begin, we write out

the whole formula for Υ12 ∶

(79) Υ12 = −4π3τ ′ ( 1
(Lτ)3

− 1
(Lτ ′)3

)Λ3(θτ) +H ((kτ − kτ
′

)θτα) − 2πτ ′Aµ ( 1
Lτ

− 1
Lτ ′

)H(U s.t.,τθτα)

−
2πτ ′Aµ
Lτ ′

H ((Qτ −Qτ
′

)θτα) −
4π3τ ′Aµ

Lτ ′
( 1
(Lτ)2

− 1
(Lτ ′)2

)H (θταH(θταα)) + [H,kτ
′

](θτα − θτ
′

α )

−
2πτ ′Aµ
Lτ ′

[H,U s.t.,τ ] (θτα − θτ
′

α )−
4π3τ ′Aµ

(Lτ ′)3
[H,θτ

′

α ]H(θταα − θτ
′

αα)− 4π3Aµτ
′ ( 1

(Lτ)3
− 1

(Lτ ′)3
) θταθταα

− 2π2Aµ ( 1
(Lτ)2

− 1
(Lτ ′)2

)P(γ̃τθτα) −
2π2Aµ

(Lτ ′)2
P ((γ̃τ − γ̃τ

′

)θτα) +
2π2Aµ

(Lτ ′)2
⟪γ̃τ

′

(θτα − θτ
′

α )⟫

+ 2π ( 1
Lτ

− 1
Lτ ′

) (V −W ⋅ t̂)τθτα +
2π
Lτ ′

(⟪V −W ⋅ t̂⟫τ − ⟪V −W ⋅ t̂⟫τ
′

) θτα

+ 2π3τ ′

Lτ ′
( 1
(Lτ)2

− 1
(Lτ ′)2

)(H((θτα)2))θτα +
2π3τ ′

(Lτ ′)3
θτα [H,θτα + θτ

′

α ] (θτα − θτ
′

α )

+ 2π
Lτ ′

∂−1
α

⎡⎢⎢⎢⎣
(Lt

2π
+ π
L
H(γ̃θα) −m ⋅ t̂)

τ

− (Lt
2π

+ π
L
H(γ̃θα) −m ⋅ t̂)

τ ′⎤⎥⎥⎥⎦
θτα +B5 +B6.

There are nineteen terms on the right-hand side of (79). Each of these ninteteen terms includes the
difference between some τ -quantity and the corresponding τ ′-quantity. In order to prove the lemma,
we will need to establish estimates for these differences. To begin, we notice that many of the terms
on the right-hand side of (79) include a difference Lτ −Lτ

′

. The estimate

∣Lτ −Lτ
′

∣ ≤ cE1/2
d

follows from (38).
Next, we establish the following:

(80) ∥mτ −mτ ′∥1 ≤ cE1/2
d .
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We use (12) to write out mτ −mτ ′ , adding and subtracting several times:

Φ(mτ −mτ ′)∗ = (zτα − zτ
′

α )K[zτd ] ((
γτ

zτα
)
α

) + zτ
′

α (K[zτd ] −K[zτ
′

d ])((γ
τ

zτα
)
α

)

+ zτ
′

α K[zτ
′

d ] ((γ
τ

zτα
)
α

− (γ
τ ′

zτ ′α
)
α

) + (zτα − zτ
′

α )
2i

[H, 1
(zτα)2

](zτα (γ
τ

zτα
)
α

)

zτ
′

α

2i
[H, 1

(zτα)2
− 1

(zτ ′α )2
](zτα (γ

τ

zτα
)
α

) + z
τ ′

α

2i
[H, 1

(zτ ′α )2
](zτα (γ

τ

zτα
)
α

− zτ
′

α (γ
τ ′

zτ ′α
)
α

)

∶= T1 + T2 + T3 + T4 + T5 + T6.

For each value of j from 1 through 6, we need to show ∥Tj∥1 ≤ cE1/2
d . For T1 and T4, this estimate is an

immediate consequence of the formula zα = Leiθ/2π and the Lipschitz estimate for the exponential.
The estimate for T5 is also immediate, for the same reason, and we just note that for this term, we
do not need to use the smoothing properties of the commutator at all. The estimate for T2 follows
by applying Lemma 2. The estimate for T3 follows from (23). The estimate for T6 follows from (25).
Thus, we have proven (80).

Using the same tools as for mτ −mτ ′ , we see from (29) that we have the following estimate:

∥(W ⋅ t̂)τ − (W ⋅ t̂)τ
′

∥1 ≤ cE1/2
d .

Then, using the definition of γ̃ in (27), we have the corresponding bound for the difference γ̃τ − γ̃τ
′

∶

∥γ̃τ − γ̃τ
′

∥1 ≤ cE1/2
d .

For the same reasons, using the definition of Q in (36) and (37), we have

∥Qτ −Qτ
′

∥1 ≤ cE1/2
d .

To prove an estimate for ∣Lτt −Lτ
′

t ∣ , we begin by finding a helpful expression for Lτt and Lτ
′

t . We

have established that Lτt = −2π⟪θταUτ⟫, and we also have written Uτ = τU s.t.,τ + Ũτ . We also have
the equation (37) as an expression for U s.t,τ . Combining these ingredients yields the following:

Lτt = −
4π3τ

(Lτ)2
⟪θταH(θταα)⟫ − 2πτ⟪θταQτ⟫ − 2π⟪θταŨτ⟫,

and of course we have the exactly corresponding formula with τ ′. The most interesting piece of the
estimate for ∣Lτt −Lτ

′

t ∣ is then the following:

∣⟪θταH(θταα)⟫ − ⟪θτ
′

αH(θτ
′

αα)⟫∣ ≤ ∣⟪(θτα − θτ
′

α )H(θταα)⟫∣ + ∣⟪θτ
′

αH(θταα − θτ
′

αα)⟫∣ .

Since we are able to integrate by parts here (recall that the notation ⟪⋅⟫ indicates an integral), we
are able to bound this by cE1/2

d .
We omit the remaining details, but the rest of the proof follows similiar, and perhaps simpler,

lines. ∎

7. Conclusion

We have demonstrated estimates for the two-dimensional interfacial Darcy flow problem, in two
cases. First, we have estimated the norm of the solution in the case that surface tension is present.
Second, in the case that the stability condition (k is negative and bounded away from zero) is
satisfied, we also demonstrated energy estimates. We actually demonstrated the estimates in both
cases not for the solutions of the physical problem, but instead for an approximate solution (i.e., the
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solution of the initial value problem for an equation with mollifiers), since this is what was needed
for the proofs of our theorems.

Using these energy estimates, we first proved that for fixed, positive surface tension (τ > 0),
the initial value problem is well-posed in sufficiently regular Sobolev spaces. Then, we studied the
behavior of these solutions as τ vanishes in the case that the stability condition is satisfied. There
is work in the literature (see the introduction for the references) that strongly indicates that when
the stability condition is violated, the solutions with surface tension do not converge to the solution
without surface tension as surface tension vanishes. We reach the opposite conclusion by making an
estimate of the difference of the solutions corresponding to two different values of the surface tension
parameter, and showing that the solutions form a Cauchy sequence as τ vanishes. This gives a new
proof of existence of solutions for the problem without surface tension.

The first energy estimate relied strongly on the presence of the surface tension, and if this were
the only energy estimate, then the limit would not be able to be taken as surface tension vanished.
The second energy estimate, which was still for solutions of the problem in the case that surface
tension is present, was uniform in the surface tension parameter. The energy estimates also allow
the parabolic nature of the Darcy problem to be shown; the problem with surface tension gains 3/2
of a spatial derivative at any positive time. Additionally, in the case that the stability condition
is satisfied, there is a gain of 1/2 of a spatial derivative with a bound independent of the surface
tension parameter.

There is a third kind of estimate which is available for 2D interfacial Darcy flow, and that is the
estimate for the problem without surface tension. We mention this in order to make the remark that
it is not necessary to consider the case with surface tension in order to show existence of solutions
for the problem without surface tension. The paper [2] by the author demonstrates energy estimates
for the problem without surface tension, and the well-posedness argument is sketched. We note that
the sketched argument is essentially the same as the present argument in the τ > 0 case, and this is
also essentially the same as the argument used by the author previously in [1] for the vortex sheet
with surface tension. If one were to combine the full well-posedness argument of the present work
with the estimates of [2] (which is to say, if one were to carry out the details of the well-posedness
proof as sketched in [2]), one would indeed arrive at a complete well-posedness proof for the τ = 0
case.

References

[1] David M. Ambrose. Well-posedness of vortex sheets with surface tension. SIAM J. Math. Anal., 35(1):211–244
(electronic), 2003.

[2] David M. Ambrose. Well-posedness of two-phase Hele-Shaw flow without surface tension. European J. Appl.

Math., 15(5):597–607, 2004.
[3] David M. Ambrose. Well-posedness of two-phase Darcy flow in 3D. Quart. Appl. Math., 65(1):189–203, 2007.

[4] David M. Ambrose, Jerry L. Bona, and David P. Nicholls. Well-posedness of a model for water waves with
viscosity. Discrete Contin. Dyn. Syst. Ser. B, 17(4):1113–1137, 2012.

[5] David M. Ambrose and Nader Masmoudi. The zero surface tension limit of two-dimensional water waves. Comm.
Pure Appl. Math., 58(10):1287–1315, 2005.

[6] David M. Ambrose and Nader Masmoudi. Well-posedness of 3D vortex sheets with surface tension. Commun.
Math. Sci., 5(2):391–430, 2007.

[7] David M. Ambrose and Nader Masmoudi. The zero surface tension limit of three-dimensional water waves.
Indiana Univ. Math. J., 58(2):479–521, 2009.

[8] David M. Ambrose and Michael Siegel. A non-stiff boundary integral method for 3d porous media flow with
surface tension. Mathematics and Computers in Simulation, 82(6):968–983, 2012.

[9] David M. Ambrose, Michael Siegel, and Svetlana Tlupova. A small-scale decomposition for 3D boundary integral
computations with surface tension. 2012. Preprint.

[10] David M. Ambrose and J. Douglas Wright. Dispersion vs. anti-diffusion: Well-posedness in variable coefficient
and quasilinear equations of KdV-type. 2012. Preprint.



38 DAVID M. AMBROSE

[11] David Michael Ambrose. Well-posedness of vortex sheets with surface tension. ProQuest LLC, Ann Arbor, MI,

2002. Thesis (Ph.D.)–Duke University.

[12] Jacques-Herbert Bailly. Local existence of classical solutions to first-order parabolic equations describing free
boundaries. Nonlinear Anal., 32(5):583–599, 1998.

[13] Gregory R. Baker, Daniel I. Meiron, and Steven A. Orszag. Generalized vortex methods for free-surface flow

problems. J. Fluid Mech., 123:477–501, 1982.
[14] G. K. Batchelor. An introduction to fluid dynamics. Cambridge Mathematical Library. Cambridge University

Press, Cambridge, paperback edition, 1999.

[15] J. Thomas Beale, Thomas Y. Hou, and John S. Lowengrub. Growth rates for the linearized motion of fluid
interfaces away from equilibrium. Comm. Pure Appl. Math., 46(9):1269–1301, 1993.

[16] J. Bear. Dynamics of Fluids in Porous Media. Dover Books on Physics and Chemistry. Dover Publications, 1988.

[17] Hector D. Ceniceros and Thomas Y. Hou. The singular perturbation of surface tension in Hele-Shaw flows. J.
Fluid Mech., 409:251–272, 2000.

[18] Hector D. Ceniceros and Thomas Y. Hou. Numerical study of interfacial problems with small surface tension.
In First International Congress of Chinese Mathematicians (Beijing, 1998), volume 20 of AMS/IP Stud. Adv.

Math., pages 63–92. Amer. Math. Soc., Providence, RI, 2001.

[19] Hans Christianson, Vera Mikyoung Hur, and Gigliola Staffilani. Strichartz estimates for the water-wave problem
with surface tension. Comm. Partial Differential Equations, 35(12):2195–2252, 2010.

[20] P. Constantin and M. Pugh. Global solutions for small data to the Hele-Shaw problem. Nonlinearity, 6(3):393–415,

1993.
[21] Peter Constantin, Diego Cordoba, Francisco Gancedo, and Robert Strain. On the global existence for the Muskat

problem. J. Eur. Math. Soc., 2013. In press.

[22] Antonio Cordoba, Diego Cordoba, and Francisco Gancedo. The Rayleigh-Taylor condition for the evolution of
irrotational fluid interfaces. Proc. Natl. Acad. Sci. USA, 106(27):10955–10959, 2009.
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