Homework Set 8

Due March 20

NOTE: Please hand in the book and proof problems separately.

Section 4.7
Problems 6, 10, 12, 14, 16

Section 5.4
Problems 6, 10, 20, 24, 28

The Proof Problems:

PROBLEM 8.1: Let V be a finite dimensional vector space of dimension n with basis B. Let $\mathcal{L}(V)$ be the vector space of linear transformations $T : V \rightarrow V$, and if $T \in \mathcal{L}(V)$, then let $[T]_B$ denote the matrix of T relative to the basis B.

a. Prove that the function $[\cdot]_B : \mathcal{L}(V) \rightarrow M_{n \times n}(\mathbb{R})$, given by $T \mapsto [T]_B$, is a (vector space) isomorphism.

b. Let $T \in \mathcal{L}(V)$. Prove that T is invertible if and only if $[T]_B$ is invertible.

c. Let $T \in \mathcal{L}(V)$. Prove that $\dim(\ker T) = \dim(\text{Nul}([T]_B))$.

PROBLEM 8.2: Let $T : \mathbb{R}^4 \rightarrow \mathbb{R}^4$ be the linear transformation with standard matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

Let $B = \{e_1, e_2, e_3, v\}$ be a basis of \mathbb{R}^4, where the e_i are the standard basis vectors.

a. Find a vector v such that

$$[T]_B = \begin{bmatrix} 1 & 0 & 0 & 8 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

Prove that your answer is correct.

b. Prove that the first three columns of $[T]_B$ do not depend on v.
c. Prove that there is no choice of \(v \) such that
\[
[T]_B = \begin{bmatrix}
1 & 0 & 0 & 8 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 3 \\
\end{bmatrix}.
\]

PROBLEM 8.3: Let \(T : V \to W \) be a linear transformation from the vector space \(V \) to the vector space \(W \). Let \(B \) be a basis for \(V \) and let \(C \) be a basis for \(W \). Let \([T]_{C \leftarrow B} \) be the matrix for \(T \) relative to the bases \(B \) and \(C \) (as defined in equation (4) on page 289). Let \(r \) be the rank of \([T]_{C \leftarrow B} \).

a. Prove that there exists a basis \(D \) of \(W \) such that \([T]_{D \leftarrow B} \) has exactly \(r \) nonzero rows.

b. Prove that \(r = \dim(\text{range}(T)) \).

c. Let \(V = \mathbb{R}^2 \) and \(W = \mathbb{R}^3 \) and suppose
\[
[T]_{C \leftarrow B} = \begin{bmatrix}
1 & 0 \\
1 & 0 \\
0 & 1 \\
\end{bmatrix}.
\]
Prove that there does not exist a basis \(A \) of \(V \) such that \([T]_{C \leftarrow A} \) has exactly two nonzero rows.