Problem 1.1. List all of the subsets of $S = \{\{1, 2\}, 3, 4\}$.

Problem 1.2. How many subsets of the set $\{1, 2, \ldots, 2n\}$ are there which contain all the even numbers in this set? Justify your answer with a short proof.

Problem 1.3. Let A be a set with n elements and let B be a set with m elements.
 a) How many functions are there from A to B?
 b) How many 1-1 functions from A to A are there?
 c) If $m < n$, how many 1-1 functions from A to B are there?
 d) If $m = 2$, how many onto functions from A to B are there?
Justify your answers with short proofs.

Problem 1.4.

Give an example of:
 a) A function on an infinite set that is 1-1, but not onto.
 b) A function on an infinite set that is onto, but not 1-1.

Problem 1.5. Prove the following distributive properties for set union and intersection:
 a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Problem 1.6. Let $A, B,$ and C be three sets and assume that A is a subset of C. Prove that

$$A \cup (B \cap C) = (A \cup B) \cap C.$$

Show by example that the condition that A is a subset of C cannot be omitted.

Problem 1.7. Let A be a set of size n and B be a set of size $n + 1$. How many pairs of functions are there $f : A \to B$ and $g : B \to A$ such that $g \circ f$ is the identity function on A? Justify your answer with a short proof.
Problem 1.8. Let A be a set and let $\binom{A}{2}$ denote the set of all 2-element subsets of A. For example, if $A = \{1, 2, 4\}$, then $\binom{A}{2} = \{\{1, 2\}, \{1, 4\}, \{2, 4\}\}$. Which of the following statements is true? If false, give a counterexample, and if true, give a proof.

a) $\binom{A \cup B}{2} = \binom{A}{2} \cup \binom{B}{2}$

b) $\binom{A \cup B}{2} \supseteq \binom{A}{2} \cup \binom{B}{2}$

c) $\binom{A \cap B}{2} = \binom{A}{2} \cap \binom{B}{2}$

d) $\binom{A \cap B}{2} \subseteq \binom{A}{2} \cap \binom{B}{2}$