Functions

Let X and Y be sets. A function $f : X \to Y$ is a map which assigns a unique element $f(x) \in Y$ to each element $x \in X$. The domain of f is the set X; the codomain of f is the set Y.

Let $A \subseteq X$. The image of A under f is the set

$$f(A) = \{ f(x) \mid x \in A \} .$$

Let $B \subseteq Y$. The preimage of B under f is the set

$$f^{-1}(B) = \{ x \in X \mid f(x) \in B \} .$$

Problem 2.1. Decide whether or not each of the following is a function. Justify your answers.

(a) $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 - 2x + 1$.

(b) $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \begin{cases} x + 1 & \text{if } x \geq 0, \\ x - 1 & \text{if } x \leq 0. \end{cases}$

(c) $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \begin{cases} x^2 - 2x + 1 & \text{if } x \geq 0, \\ -x^3 + 1 & \text{if } x \leq 0. \end{cases}$

Problem 2.2. Decide whether the following statements are true or false. If true, prove it. If false, provide a counterexample which shows that the statement is false; *i.e.* give an explicit, concrete example of a function f for which the equality fails—don’t forget to provide the domain and codomain in your example!
(a) \(f(f^{-1}(B)) \subseteq B \) for every subset \(B \) of \(Y \).

(b) \(f^{-1}(f(A)) = A \) for every subset \(A \) of \(X \).

(c) \(f(A_1 \cap A_2) = f(A_1) \cap f(A_2) \) for all subsets \(A_1, A_2 \) of \(X \).

(d) \(f(A_1 \cup A_2) = f(A_1) \cup f(A_2) \) for all subsets \(A_1, A_2 \) of \(X \).