Homework Set 2

Math 222 — Fall 2017

Due Wednesday, October 11

Problem 2.1. Prove the following identity (for \(n \geq 0 \)):

\[
3^n = \sum_{k=0}^{n} \binom{n}{k} 2^k.
\]

Problem 2.2. Determine (with proof) the number of \(r \)-tuples of integers \((a_1, \ldots, a_r)\) satisfying \(a_i \geq i \) for \(i = 1, \ldots, r \), and \(a_1 + a_2 + \cdots + a_r = n \).

Problem 2.3. We showed in class that the total number of compositions of \(n \) is \(2^{n-1} \). Find a simple bijective proof of this fact (the set of subsets of \([n-1]\) has size \(2^{n-1} \), so this is a natural candidate to show to be in bijection with the set of compositions of \(n \), however something similar but slightly different may work better).

Problem 2.4. Prove the trinomial formula:

\[
(x + y + z)^n = \sum_{a,b,c \geq 0, a+b+c=n} \binom{n}{a,b,c} x^a y^b z^c,
\]

where \(\binom{n}{a,b,c} = \frac{n!}{a!b!c!} \).

Problem 2.5. Let \(A_n \) be the \(n \times n \) matrix whose \((i,j)\) entry is \(\binom{i}{j} \), with rows and columns numbered starting from 0. So, for example,

\[
A_5 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 \\
1 & 3 & 3 & 1 & 0 \\
1 & 4 & 6 & 4 & 1
\end{pmatrix}.
\]

Compute \(A_2^{-1}, A_3^{-1} \) and \(A_4^{-1} \). Find and prove a formula for \(A_n^{-1} \).

Problem 2.6. Let \(R_{d,n} \) be the number of regions cut out by \(n \) hyperplanes in general position in \(d \)-space. In class we found the recurrence \(R_{d,n+1} = R_{d,n} + R_{d-1,n} \). Using this, find a formula for \(R_{d,n} \) in terms of binomial coefficients.