Homework Set 5

Math 331 — Fall 2019

Due Friday, November 8

Problem 5.1. Let $\sigma \in S_n$ be with cycle notation of the form $(a_1a_2\ldots a_r)$ with r odd. Show that σ^2 is also a cycle of the same form.

Problem 5.2. Let $X \subseteq \{1, 2, \ldots, n\}$. Let H_X be the subset of S_n consisting of bijections $\pi : \{1, \ldots, n\} \to \{1, \ldots, n\}$ such that $\pi(x) = x$ for all $x \in X$. Show that H_X is a subgroup of S_n.

Problem 5.3. Find all subgroups of S_4 of size 4. Justify your answer—the main thing to show here is that your list is complete.

Problem 5.4. For $n \geq 4$, show that there is no normal subgroup of S_n of size 3.

Problem 5.5. Let H be the smallest subgroup of S_5 which contains (12345) and $(12)(35)$ (we are using cycle notation). Describe H by listing its elements explicitly in cycle notation. Check that what you have obtained is actually a subgroup by showing that it is closed under multiplication; there is a way to do this without explicitly computing all products of two elements.

Problem 5.6. Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.

Problem 5.7. Show that if $\phi : \mathbb{Z}_6 \times \mathbb{Z}_3 \to \mathbb{Z}_{14}$ is a nontrivial homomorphism, then $|\ker(\phi)| = 9$.

Problem 5.8. Show that if $\phi : G \to H$ is a group homomorphism and $|G|$ and $|H|$ are finite with $\gcd(|G|, |H|) = 1$, then ϕ is trivial.

Problem 5.9. Suppose that G is finite and $K \trianglelefteq G$ has index m. Show that if $\gcd(n, m) = 1$, then K contains every element of G of order n.