Homework Set 6

MATH 331 — FALL 2019

Due Friday, November 15

PROBLEM 6.1. List all possible cycle types for S_5. For each cycle type, write down one permutation of that cycle type and indicate how many elements there are of this cycle type. No proof is required.

PROBLEM 6.2. Show that in S_n, the transposition (12) is not equal to a product of 3-cycles.

PROBLEM 6.3. A group G is generated by $a_1, a_2, \ldots, a_k \in G$ if every element of G can be written as a product $a_{i_1}^{n_1} a_{i_2}^{n_2} \cdots a_{i_\ell}^{n_\ell}$ for some $i_1, i_2, \ldots, i_\ell \in \{1, 2, \ldots, k\}$ and $n_1, n_2, \ldots, n_\ell \in \mathbb{Z}$. Show that S_n is generated by $(12), (23), \ldots, ((n-1)n)$; these elements are called the simple reflections.

PROBLEM 6.4. In the previous problem set, we showed that
\[
\{e, (12345), (13524), (14253), (15432), (12)(35), (23)(41), (34)(52), (45)(13), (51)(24)\}
\]
is a subgroup of S_5. This is called the dihedral group of order 10, denoted D_{10}. Determine (with proof) the conjugacy classes of D_{10}.

PROBLEM 6.5. Determine (with proof) the conjugacy classes of A_4. Warning: these are not necessarily the same as the intersection of a conjugacy class of S_4 with A_4.

PROBLEM 6.6. An automorphism of a group G is called an inner automorphism if it is of the form $\psi_g : G \to G$ for some $g \in G$, where ψ_g denotes the conjugation by g automorphism. Find an automorphism of a group G which is not an inner automorphism. Justify your answer.

PROBLEM 6.7. Let G be a group acting on a set X. Let $Y \subseteq X$. Let $G_Y = \{g \in G \mid g \cdot y = y \text{ for all } y \in Y\}$. Show G_Y is a subgroup of G.

PROBLEM 6.8. Consider the natural action of $GL_2(\mathbb{R})$ on \mathbb{R}^2, where the action of $A \in GL_2(\mathbb{R})$ on $v \in \mathbb{R}^2$ is Av. Let $H = \left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \mid a \in \mathbb{R} \right\}$. This is a subgroup of $GL_2(\mathbb{R})$ and by restriction it acts on \mathbb{R}^2 (you do not need to prove this). Determine the orbits for the action of H on \mathbb{R}^2.