We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Do Problems A–C but do not turn these in. Turn in Problems 1–10.

Problem A. Let \(R \) be a ring. Show that \((-1)^2 = 1\) in \(R \).

Problem B. Decide which of the following are subrings of the ring of all functions from the closed interval \([0, 1]\) to \(R \):
(a) the set of all functions \(f(x) \) such that \(f(q) = 0 \) for all \(q \in \mathbb{Q} \cap [0, 1] \)
(b) the set of all polynomial functions
(c) the set of all functions which only have a finite number of zeros, together with the zero function
(d) the set of all functions which have an infinite number of zeros
(e) the set of all functions \(f \) such that \(\lim_{x \to 1-} f(x) = 0 \).
(f) the set of all rational linear combinations of the functions \(\sin(nx) \) and \(\cos(mx) \), where \(m, n \in \{0, 1, 2, \ldots\} \).

Problem C. Decide which of the following are ideals of the ring \(\mathbb{Z} \times \mathbb{Z} \):
(a) \(\{(a, a) | a \in \mathbb{Z}\} \)
(b) \(\{(2a, 2b) | a, b \in \mathbb{Z}\} \)
(c) \(\{(2a, 0) | a \in \mathbb{Z}\} \)
(d) \(\{(a, -a) | a \in \mathbb{Z}\} \).

Problem 1. An element \(x \) in a ring \(R \) is called nilpotent if \(x^m = 0 \) for some \(m \in \mathbb{Z}^+ \). Let \(x \) be a nilpotent element of the commutative ring \(R \).
(a) Prove that \(x \) is either zero or a zero divisor.
(b) Prove that \(rx \) is nilpotent for all \(r \in R \).
(c) Prove that \(1 + x \) is a unit in \(R \).
(d) Deduce that the sum of a nilpotent element and a unit is a unit.

Problem 2. Let \(R \) be a ring with \(1 \neq 0 \). A nonzero element \(a \) is called a left zero divisor in \(R \) if there is a nonzero element \(x \in R \) such that \(ax = 0 \). Symmetrically, \(b \neq 0 \) is a right zero divisor if there is a nonzero \(y \in R \) such that \(by = 0 \) (so a zero divisor is an element which is neither a left nor a right zero divisor). An element \(u \in R \) has a left inverse in \(R \) if there is some \(s \in R \) such that \(su = 1 \). Symmetrically, \(v \) has a right inverse if \(vt = 1 \) for some \(t \in R \).
(a) Prove that \(u \) is a unit if and only if it has both a right and a left inverse (i.e. \(u \) must have a two-sided inverse).
(b) Prove that if \(u \) has a right inverse then \(u \) is not a right zero divisor.
(c) Prove that if \(u \) has more than one right inverse then \(u \) is a left zero divisor.
(d) Prove that if \(R \) is a finite-dimensional algebra over a field then every element that has a right inverse is a unit (i.e., has a two-sided inverse).

Problem 3. Let \(\mathcal{K} = \{k_1, \ldots, k_m\} \) be a conjugacy class in the finite group \(G \).
(a) Prove that the element \(K = k_1 + \cdots + k_m \) is in the center of the group ring \(RG \).
(b) Let K_1, \ldots, K_r be the conjugacy classes of G and for each K_i let K_i be the element of RG that is the sum of the members of K_i. Prove that an element $a \in RG$ is in the center of RG if and only if $a = a_1K_1 + a_2K_2 + \cdots + a_rK_r$ for some $a_1, a_2, \ldots, a_r \in R$.

Problem 4. Prove that the rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ are not isomorphic.

Problem 5. Decide which of the following are ideals of the ring $\mathbb{Z}[x]$ (and justify your answer):
(a) the set of all polynomials whose constant term is a multiple of 3
(b) the set of all polynomials whose coefficient of x^2 is a multiple of 3
(c) the set of all polynomials whose constant term, coefficient of x, and coefficient of x^2 are zero
(d) $\mathbb{Z}[x^2]$ (i.e., the polynomials in which only even powers of x appear)
(e) the set of polynomials whose coefficients sum to zero
(f) the set of polynomials $p(x)$ such that $p'(0) = 0$, where $p'(x)$ is the usual first derivative of $p(x)$ with respect to x.

Problem 6. Prove that every (two-sided) ideal of $M_n(R)$ is equal to $M_n(J)$ for some (two-sided) ideal J of R.

Problem 7. Let I and J be ideals of R.
(a) Prove that $I + J$ is the smallest ideal of R containing both I and J.
(b) Prove that IJ is an ideal contained in $I \cap J$.
(c) Give an example where $IJ \neq I \cap J$.
(d) Prove that if R is commutative and if $I + J = R$ then $IJ = I \cap J$.

Problem 8. For the following two rings, give an example of a prime ideal that is not maximal (and prove that your answer is correct):
(a) $\mathbb{Z}[x]
(b) F[x, y]$ for a field F.

Problem 9. Let S_3 denote the symmetric group on three letters. Determine all two-sided ideals of $\mathbb{C}S_3$.

Problem 10. Let R be the ring of all continuous functions from the closed interval $[0, 1]$ to \mathbb{R} and for each $c \in [0, 1]$ let $M_c = \{ f \in R | f(c) = 0 \}$ (recall that M_c was shown to be a maximal ideal of R).
(a) Prove that if M is any maximal ideal of R then there is a real number $c \in [0, 1]$ such that $M = M_c$.
(b) Prove that if b and c are distinct points in $[0, 1]$ then $M_b \neq M_c$.
(c) Prove that M_c is not equal to the principal ideal generated by $x - c$.
(d) Prove that M_c is not a finitely generated ideal.