Problem Set 3
Due: Wednesday, January 31 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Turn in Problems 1–8.

Problem 1. An element $e \in R$ is called a central idempotent if $e^2 = e$ and $er = re$ for all $r \in R$. If e is a central idempotent in R, prove that $M = eM \oplus (1 - e)M$.

Problem 2. An element m of the R-module M is called a torsion element if $rm = 0$ for some nonzero element $r \in R$. The set of torsion elements is denoted

$$\text{Tor}(M) = \{m \in M \mid rm = 0 \text{ for some nonzero } r \in R\}.$$

(a) Prove that if R is an integral domain then $\text{Tor}(M)$ is a submodule of M (called the torsion submodule of M).

(b) Give an example of a ring R and an R-module M such that $\text{Tor}(M)$ is not a submodule.

(c) If R has zero divisors show that every nonzero R-module has nonzero torsion elements.

Problem 3. Let $\phi : M \to N$ be an R-module homomorphism. Prove that $\phi(\text{Tor}(M)) \subseteq \text{Tor}(N)$.

Problem 4. Let $R = \mathbb{Z}[x]$ and let $M = (2, x)$ be the ideal generated by 2 and x, considered as a submodule of R. Show that $\{2, x\}$ is not a basis of M. Show that the rank of M is 1 but that M is not free of rank 1.

Problem 5. Let F be a field. Give a simple description of the set of zero divisors of $M_n(F)$ in terms of concepts from linear algebra.

Problem 6. Show that if M_1 and M_2 are irreducible R-modules, then any nonzero R-module homomorphism from M_1 to M_2 is an isomorphism. Deduce that if M is irreducible then $\text{End}_R(M)$ is a division ring (this result is called Schur’s Lemma).

Problem 7. Show that if $R = \mathbb{Z}$, $I = \mathbb{Z}_{>0}$, and $M_i = \mathbb{Z}/i\mathbb{Z}$ for each $i \in I$, then $\bigoplus_{i \in I} M_i$ is not isomorphic to $\prod_{i \in I} M_i$.

Problem 8. Determine all 2-dimensional \mathbb{C}-algebras. This means (1) give a list of nonisomorphic 2-dimensional \mathbb{C}-algebras, and (2) show that any 2-dimensional \mathbb{C}-algebra is isomorphic to one on the list.