Problem 1. For $a, b \in R$, where R is a commutative ring and a, b are nonzero, a least common multiple of a and b is an element c of R such that $a | c$, $b | c$, and if $(a | c'$ and $b | c')$ then $c | c'$. Prove that any two nonzero elements of a PID have a least common multiple.

Problem 2. Let R be an integral domain. Prove that if the following two conditions hold then R is a PID:
(i) for any $a, b \in R$, there is a $d \in R$ such that $(a, b) = (d)$, and
(ii) if a_1, a_2, \ldots are nonzero elements of R such that $a_{i+1} | a_i$ for all i, then there is a positive integer N such that a_n is a unit times a_N for all $n \geq N$.

Problem 3. Let F be a field and $R = F[x, y]$. Every ideal of R is finitely generated (we have not proved this, but you can use it for this problem). For a finitely generated ideal I, let $s(I)$ be the smallest possible size of a generating set of I. Determine
$$\max\{s(I) \mid I \text{ is an ideal of } R\}.$$ (Define max of a set to be ∞ if the set is unbounded from above.)

Problem 4. Let R be a commutative ring. Show that R is a field if and only if every R-module has a basis.

Problem 5. Let M be a module over the integral domain R.
(a) Let $x \in M$ be a torsion element. Show that x is linearly dependent. Conclude that the rank of Tor(M) is 0, so that in particular any torsion R-module has rank 0.
(b) Show that the rank of M is the same as the rank of the (torsion free) quotient $M/\text{Tor} M$.

Problem 6. Let M be a module over the integral domain R. Suppose that M has rank n and that x_1, \ldots, x_n is any maximal set of linearly independent elements of M. Let $N = Rx_1 + \cdots + Rx_n$ be the submodule generated by x_1, \ldots, x_n. Prove that N is isomorphic to R^n and that the quotient M/N is a torsion R-module.

Problem 7. Find an example of a commutative ring R and linearly independent elements x_1, \ldots, x_n of R^n such that these elements do not form a basis of R^n.

Problem 8. Let R be a commutative ring and let b_1, \ldots, b_n be a basis of R^n. Let $C = [c_{ij}]$ be an $n \times n$ matrix with coefficients in R, i.e., $C \in M_n(R)$. Suppose that det(C) is a unit in R.
(a) Show that C is a unit in $M_n(R)$.
(b) For $i = 1, \ldots, n$, let $d_i = \sum_j c_{ij}b_j$. Show that the elements d_1, \ldots, d_n form a basis of R^n.

Problem 9. Let R be a commutative ring and let M be the free R-module R^n. Show that if the elements $x_1, \ldots, x_n \in M$ generate M, then they form a basis of M.

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise.