Problem Set 7
Due: Wednesday, February 28 at the beginning of class

Problem 1. Determine the Jordan canonical form of the $n \times n$ matrix A with 1’s on the diagonal and 2’s on the superdiagonal.

\[
A := \begin{bmatrix}
1 & 2 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 2 & 0 & \cdots & 0 \\
0 & 0 & 1 & 2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 & 2 \\
0 & 0 & \cdots & 0 & 0 & 1
\end{bmatrix}
\]

Problem 2. We define the quaternion group Q_8 by generators and relations:

\[Q_8 = \langle -1, i, j, k \mid (-1)^2 = 1, i^2 = j^2 = k^2 = ijk = -1 \rangle.\]

There is a faithful representation $\phi : Q_8 \to GL_2(\mathbb{C})$ defined by

\[
\phi(i) = \begin{bmatrix}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{bmatrix}
\quad \text{and} \quad
\phi(j) = \begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}.
\]

Write out the matrices $\phi(g)$ for every $g \in Q_8$ for this representation.

Problem 3. Let R be a ring. Let M, N be R-modules and $S \subseteq M$ a submodule of M. Let $\pi : M \to M/S$ be the natural projection. Let $\Theta : \text{Hom}_R(M/S, N) \to \text{Hom}_R(M, N)$ given by $\phi \mapsto \phi \circ \pi$. Show that Θ is injective and that the image of Θ consists of those $\alpha \in \text{Hom}_R(M, N)$ such that $S \subseteq \ker(\alpha)$. This shows that “giving a map from M/S to N is the same as giving a map from M to N that sends S to 0”.

Problem 4. Prove that the degree 1 representations of G are in bijective correspondence with the degree 1 representations of the abelian group G/G' where $G' := \langle aba^{-1}b^{-1} \mid a, b \in G \rangle$ is the commutator subgroup of G.

Problem 5. Prove that if $|G| > 1$ then every irreducible FG-module has dimension $< |G|$.

Problem 6. Let $\phi : G \to GL_n(\mathbb{C})$ be a representation of the finite group G. Show that for every $g \in G$, $\phi(g)$ is diagonalizable and its eigenvalues are roots of unity.

Problem 7. We say that $n \times n$ matrices A_1, \ldots, A_k are simultaneously diagonalizable if there is an invertible matrix P such that $P^{-1}A_ip$ are diagonal matrices for all i. Let $\{A_1, \ldots, A_k\} \subseteq GL_n(\mathbb{C})$ be a subgroup of commuting matrices. Show that these matrices are simultaneously diagonalizable using representation theory.

Problem 8. Let $\phi : G \to GL_n(\mathbb{C})$ be an irreducible representation of the finite group G. Show that if $g \in Z(G)$, then $\phi(g) = cI_n$ for some $c \in \mathbb{C}$.