Problem Set 8
Due: Wednesday, November 16 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. In the problems below, G denotes a finite group. For problems involving decomposing representations into irreducibles, it may be helpful to use the character tables in 19.1. Turn in Problems 1–8.

Problem 1. Let $\phi : Q_8 \rightarrow GL_4(\mathbb{C})$ be the representation determined by

$$
i \mapsto \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad j \mapsto \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}.$$

Determine the decomposition of ϕ into irreducible representations.

Problem 2. Let $\chi : G \rightarrow \mathbb{C}$ be a character. Show that $\chi(g) = \overline{\chi(g^{-1})}$ for every $g \in G$.

Problem 3. Let $\psi : G \rightarrow \mathbb{C}$ be the character of any 2-dimensional representation of a group G and let x be an element of order 2 in G. Prove that $\psi(x) = 2, 0, \text{ or } -2$. Generalize this to n-dimensional representations.

Problem 4. Let $\chi : G \rightarrow \mathbb{C}$ be an irreducible character of G. Prove that for every element z in the center of G we have $\chi(z) = \epsilon \chi(1)$, where ϵ is some root of 1 in \mathbb{C}.

Problem 5. Let $\phi : G \rightarrow GL(V)$ be a representation and let $\chi : G \rightarrow \mathbb{C}^\times$ be a degree 1 representation. Prove that $\chi \phi : G \rightarrow GL(V)$ defined by $\chi \phi(g) = \chi(g) \phi(g)$ is a representation (note that multiplication of the linear transformation $\phi(g)$ by the complex number $\chi(G)$ is well defined). Show that $\chi \phi$ is irreducible if and only if ϕ is irreducible. Show that if ψ is the character afforded by ϕ then $\chi \psi$ is the character afforded by $\chi \phi$. Deduce that the product of any irreducible character with a character of degree 1 is also an irreducible character.

Problem 6. The action of S_4 on $\{1, 2, 3, 4\}$ induces an action of S_4 on subsets of $\{1, 2, 3, 4\}$ of size 2. For instance, if π is the cycle (123), then

$$
\pi(\{1, 2\}) = \{3, 1\}, \pi(\{1, 3\}) = \{3, 2\}, \pi(\{1, 4\}) = \{3, 4\}, \pi(\{2, 3\}) = \{1, 2\}, \pi(\{2, 4\}) = \{1, 4\}, \pi(\{3, 4\}) = \{2, 4\}.
$$

Let $M_{2,2}$ denote the $\mathbb{C}S_4$-module corresponding to this action. Determine the decomposition of $M_{2,2}$ into irreducibles.

Problem 7. Determine the character table of D_{12} (assume the field is \mathbb{C}).
Problem 8. Recall that for FG-modules V and W, $\text{Hom}_F(V, W)$ is an FG-module via $(g \cdot \phi)(v) = g\phi(g^{-1}v)$ for every $\phi \in \text{Hom}_F(V, W)$, $g \in G$, $v \in V$. Show that the character $\chi_{\text{Hom}_F(V, W)}$ is given by

$$\chi_{\text{Hom}_F(V, W)}(g) = \chi_V(g^{-1})\chi_W(g)$$

for every $g \in G$.

Hint: One possible route to proving this is to choose bases for V and W (say V has dimension n and W has dimension m); then $\text{Hom}_F(V, W)$ can be identified with $m \times n$-matrices and has a basis $\{E_{ij}\}$, where E_{ij} denotes the matrix with 1 in the i, j-th spot and 0 elsewhere. Then the matrix corresponding to the action of g on $\text{Hom}_F(V, W)$ is an $mn \times mn$-matrix that can be computed explicitly in terms of matrices corresponding to the action of g^{-1} on V, and the action of g on W.