Problem 1. Prove that elements \(x \) and \(y \) are conjugate in a group \(G \) if and only if \(\chi(x) = \chi(y) \) for all irreducible characters \(\chi \) of \(G \).

Problem 2. Let \(H \) and \(K \) be finite groups and \(V \) be a \(\mathbb{C} \)-vector space. Let \(G = H \times K \) and let \(\phi : H \to GL(V) \) be an irreducible representation of \(H \) with character \(\chi \). Then \(G \xrightarrow{\pi_H} H \xrightarrow{\phi} GL(V) \) gives an irreducible representation of \(G \), where \(\pi_H \) is the natural projection; the character \(\tilde{\chi} \) of this representation is \(\tilde{\chi}((h,k)) = \chi(h) \). Likewise any irreducible character \(\psi \) of \(K \) gives an irreducible character \(\tilde{\psi} \) of \(G \) with \(\tilde{\psi}((h,k)) = \psi(k) \).

Prove that the product \(\tilde{\chi} \tilde{\psi} \) is an irreducible character of \(G \).

Problem 3. Show that the character table (over \(\mathbb{C} \)) is an invertible matrix (you can use the fact that it is a square matrix). Use this to prove the second orthogonality relations: Let \(\chi_1, \ldots, \chi_r \) be the irreducible characters of \(G \). For any \(x, y \in G \),

\[
\sum_{i=1}^{r} \chi_i(x)\bar{\chi}_i(y) = \begin{cases} |C_G(x)| & \text{if } x \text{ and } y \text{ are conjugate in } G, \\ 0 & \text{otherwise.} \end{cases}
\]

Here \(C_G(x) \) denotes the centralizer of \(x \) in \(G \).

Problem 4. The alternating group \(A_4 \) is a subgroup of \(S_4 \), hence \(\mathbb{C}A_4 \) is a subalgebra of \(\mathbb{C}S_4 \). Therefore any \(\mathbb{C}S_4 \)-module is a \(\mathbb{C}A_4 \)-module by restriction. For each irreducible \(\mathbb{C}S_4 \)-module \(V \), determine the decomposition of \(V \), regarded as a \(\mathbb{C}A_4 \)-module, into irreducibles. Feel free to use the character table for \(A_4 \) in 19.1.

Problem 5. Repeat the previous problem with \(D_8 \) in place of \(A_4 \), viewing \(D_8 \subset S_4 \) as arising from thinking of \(S_4 \) as the permutations of the vertices of a square and \(D_8 \) as the subgroup of \(S_4 \) that preserves the edges of the square.

Problem 6. By the Artin-Wedderburn Theorem and the character table of \(S_3 \), we have the following isomorphism of rings:

\[
\mathbb{C}S_3 \cong M_1(\mathbb{C}) \times M_2(\mathbb{C}) \times M_1(\mathbb{C}).
\]

Determine explicitly the elements \(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \) on the right hand side in terms of the basis \(\{ \pi : \pi \in S_3 \} \) of \(\mathbb{C}S_3 \).

This is equivalent to finding three elements \(z_1, z_2, z_3 \) in the center of \(\mathbb{C}S_3 \) such that

\[
\begin{align*}
\bullet & \quad z_1 + z_2 + z_3 = 1, \\
\bullet & \quad z_i^2 = z_i, \\
\bullet & \quad z_iz_j = z_jz_i = 0 \text{ for } i \neq j.
\end{align*}
\]

Problem 7. Repeat the previous problem with the cyclic group \(Z_5 \): since the irreducible \(\mathbb{C}Z_5 \)-modules are 1-dimensional, we have

\[
\mathbb{C}Z_5 \cong M_1(\mathbb{C}) \times M_1(\mathbb{C}) \times M_1(\mathbb{C}) \times M_1(\mathbb{C}).
\]

Determine the isomorphism explicitly in terms of the natural basis on the right hand side and the basis \(\{ e, g, g^2, g^3, g^4 \} \) of \(\mathbb{C}Z_5 \).
Problem 8. Let F be a field and G a finite group. Let V and W be FG-modules.

(a) Consider the F-vector space $V \otimes_F W$. Show that if $g \in G$ acts on $V \otimes_F W$ by

$$g \cdot (v \otimes w) := gv \otimes gw \quad \text{for every } v \in V, w \in W,$$

then this gives $V \otimes_F W$ the structure of an FG-module.

(b) Prove that the character of $V \otimes_F W$ is given by $\chi_{V \otimes_F W}(g) = \chi_V(g)\chi_W(g)$ for every $g \in G$.

Problem 9. An element of a tensor product $M \otimes_R N$ is a **simple tensor** if it is of the form $m \otimes n$ for $m \in M$, $n \in N$. Let F be a field and let V be an n-dimensional F-vector space.

(a) The vector space $V \otimes_F V$ can be identified with $M_n(F)$ via $e_i \otimes e_j \mapsto E_{ij}$, where e_1, \ldots, e_n is a basis of V and E_{ij} is the matrix with a 1 in the i,jth spot and 0’s elsewhere. Express what it means for an element of $V \otimes_F V$ to be a simple tensor in terms of concepts from linear algebra.

(b) Suppose $n \geq 2$. Show that the element $e_1 \otimes e_2 + e_2 \otimes e_1$ in $V \otimes_F V$ is not a simple tensor.