Problem Set 9
Due: Wednesday, March 13 at the beginning of class

Problem 1. Prove that elements x and y are conjugate in a group G if and only if $\chi(x) = \chi(y)$ for all irreducible characters χ of G.

Problem 2. Let H and K be finite groups and V be a \mathbb{C}-vector space. Let $G = H \times K$ and let $\phi : H \to GL(V)$ be an irreducible representation of H with character χ. Then $G \xrightarrow{\pi_H} H \xrightarrow{\phi} GL(V)$ gives an irreducible representation of G, where π_H is the natural projection; the character $\tilde{\chi}$ of this representation is $\tilde{\chi}((h,k)) = \chi(h)$. Likewise any irreducible character ψ of K gives an irreducible character $\tilde{\psi}$ of G with $\tilde{\psi}((h,k)) = \psi(k)$.

Prove that the product $\tilde{\chi}\tilde{\psi}$ is an irreducible character of G.

Problem 3. Show that the character table (over \mathbb{C}) is an invertible matrix (you can use the fact that it is a square matrix). Use this to prove the second orthogonality relations: Let χ_1, \ldots, χ_r be the irreducible characters of G. For any $x, y \in G$,

$$\sum_{i=1}^{r} \chi_i(x)\overline{\chi_i(y)} = \begin{cases} |C_G(x)| & \text{if } x \text{ and } y \text{ are conjugate in } G, \\ 0 & \text{otherwise.} \end{cases}$$

Here $C_G(x)$ denotes the centralizer of x in G.

Problem 4. The alternating group A_4 is a subgroup of S_4, hence $\mathbb{C}A_4$ is a subalgebra of $\mathbb{C}S_4$. Therefore any $\mathbb{C}S_4$-module is a $\mathbb{C}A_4$-module by restriction. For each irreducible $\mathbb{C}S_4$-module V, determine the decomposition of V, regarded as a $\mathbb{C}A_4$-module, into irreducibles. Feel free to use the character table for A_4 in 19.1.

Problem 5. Repeat the previous problem with D_8 in place of A_4, viewing $D_8 \subset S_4$ as arising from thinking of S_4 as the permutations of the vertices of a square and D_8 as the subgroup of S_4 that preserves the edges of the square.

Problem 6. Let Z_5 be the cyclic group of order 5. Find five elements z_1, \ldots, z_5 of $\mathbb{C}Z_5$ such that

- $z_1 + z_2 + z_3 + z_4 + z_5 = 1$,
- $z_i^2 = z_i$ for all i,
- $z_iz_j = z_jz_i = 0$ for $i \neq j$.

Problem 7. Recall that for FG-modules V and W, $\text{Hom}_F(V,W)$ is an FG-module via $(g \cdot \phi)(v) = g\phi(g^{-1}v)$ for every $\phi \in \text{Hom}_F(V,W), g \in G, v \in V$. Show that the character $\chi_{\text{Hom}_F(V,W)}$ is given by

$$\chi_{\text{Hom}_F(V,W)}(g) = \chi_V(g^{-1})\chi_W(g) \quad \text{for every } g \in G.$$

Hint: One possible route to proving this is to choose bases for V and W (say V has dimension n and W has dimension m); then $\text{Hom}_F(V,W)$ can be identified with $m \times n$-matrices and has a basis $\{E_{ij}\}$, where E_{ij} denotes the matrix with 1 in the i, j-th spot and 0 elsewhere. Then the matrix corresponding to the action of g on $\text{Hom}_F(V,W)$ is an $mn \times mn$-matrix that can be computed explicitly in terms of matrices corresponding to the action of g^{-1} on V, and the action of g on W.
