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Abstract. A fundamental open problem in algebraic combinatorics is to find a positive
combinatorial formula for Kronecker coefficients, which are multiplicities of the decom-
position of the tensor product of two Sr-irreducibles into irreducibles. Mulmuley and
Sohoni attempt to solve this problem using canonical basis theory, by first constructing a
nonstandard Hecke algebra Br, which, though not a Hopf algebra, is a u-analogue of the
Hopf algebra CSr in some sense (where u is the Hecke algebra parameter). For r = 3,
we study this Hopf-like structure in detail. We define a nonstandard Hecke algebra

Ȟ
(k)
3 ⊆ H

⊗k
3 , determine its irreducible representations over Q(u), and show that it has

a presentation with a nonstandard braid relation that involves Chebyshev polynomials
evaluated at 1

u+u−1 . We generalize this to Hecke algebras of dihedral groups. We go on to
show that these nonstandard Hecke algebras have bases similar to the Kazhdan-Lusztig
basis of H3 and are cellular algebras in the sense of Graham and Lehrer.

1. Introduction

Let Sr denote the symmetric group on r letters and let Mν be the Sr-irreducible cor-
responding to the partition ν. The Kronecker coefficient gλµν is the multiplicity of Mν

in the tensor product Mλ ⊗Mµ. A fundamental and difficult open problem in algebraic
combinatorics is to find a positive combinatorial formula for these coefficients. Although
this problem has been studied since the early twentieth century, the general case still
seems out of reach. In the last ten years this problem has seen a resurgence of effort,
perhaps because of its recently discovered connections to quantum information theory [9]
and complexity theory [16]. Much of the recent progress has been for Kronecker coef-
ficients indexed by two two-row shapes, i.e., when λ and µ have two rows: an explicit,
though not positive, formula was given by Remmel and Whitehead in [17] and further
improvements were made by Rosas [19] and Briand-Orellana-Rosas [7]. Briand-Orellana-
Rosas [7, 8] and Ballantine-Orellana [2] have also made progress on the special case of
reduced Kronecker coefficients, sometimes called the stable limit, in which the first part
of the partitions λ, µ, ν is large.

In a series of recent papers, Mulmuley, in part with Sohoni and Narayanan, describes
an approach to P vs. NP and related lower bound problems in complexity theory us-
ing algebraic geometry and representation theory, termed geometric complexity theory.
Understanding Kronecker coefficients, particularly, having a good rule for when they are
zero, is critical to their plan. In fact, Mulmuley gives a substantial informal argument
claiming that if certain difficult separation conjectures like P 6= NP are true, then there
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is a #P formula for Kronecker coefficients and a polynomial time algorithm that deter-
mines whether a Kronecker coefficient is nonzero [15]. Thus from the complexity-theoretic
perspective, there is hope that Kronecker coefficients will have nice formulae like those for
Littlewood-Richardson coefficients, though experience suggests they will be much harder.

A useful perspective for studying tensor products of Sr-modules is to endow the group
algebra ZSr with the structure of a Hopf algebra. The coproduct is ∆ : ZSr → ZSr⊗ZSr,
w 7→ w ⊗ w, and the ZSr-module Mλ ⊗ Mµ is then defined to be the restriction of the
ZSr ⊗ ZSr-module Mλ ⊠Mµ along ∆.

In [16], Mulmuley and Sohoni attempt to use canonical bases to understand Kronecker
coefficients by constructing an algebra defined over Z[u, u−1] that carries some of the
information of the Hopf algebra ZSr and specializes to it at u = 1. Specifically, they
construct the nonstandard Hecke algebra Ȟr (denoted Br in [16]), which is a subalgebra
of the tensor square of the Hecke algebra Hr such that the inclusion ∆̌ : Ȟr →֒ Hr ⊗Hr

is a u-analogue of the coproduct ∆ of ZSr (see Definition 2.2). The goal is then to break
up the Kronecker problem into two steps [14]:

(1) Determine the multiplicity nα
λ,µ of an irreducible Ȟr-module M̌α in the tensor

product Mλ ⊗Mµ.
(2) Determine the multiplicity mν

α of the Sr-irreducible Mν in M̌α|u=1.

The resulting formula for Kronecker coefficients is

gλµν =
∑

α

nα
λ,µm

ν
α. (1)

Thus a positive combinatorial formula for nα
λ,µ and mν

α would yield one for Kronecker
coefficients.

However, this approach meets with serious difficulties. The defining relations of the
algebras Ȟr seem to be extremely complicated and remain mysterious even for r = 4.
Problem (1) seems to be within reach, and, in the forthcoming paper [6], we solve it in
the two-row case. For problem (2), the hope is to find a canonical basis of M̌α that has a
cellular decomposition into Sr-irreducibles at u = 1, however this seems to be extremely
difficult.

In this paper we study a family of algebras Ȟ
(k)
3 that contains H3 and Ȟ3 as cases

k = 1, 2. We discover a remarkable connection between the defining relations of these

algebras and Chebyshev polynomials Tk(x). Specifically, we show that Ȟ
(k)
3 is gener-

ated by P(k)
1 ,P(k)

2 and has a relation, which we call the nonstandard braid relation, that
generalizes the braid relation for k = 1:

P(k)
1 (P(k)

21 − ([2]ka(1))2)(P(k)
21 − ([2]ka(2))2) . . . (P(k)

21 − ([2]ka(k))2) =

P(k)
2 (P(k)

12 − ([2]ka(1))2)(P(k)
12 − ([2]ka(2))2) . . . (P(k)

12 − ([2]ka(k))2), (2)

where [2] = u+ u−1, P(k)
i1i2

= P(k)
i1

P(k)
i2

, and the coefficient a(j) is equal to Tj(
1
[2]
).

Chebyshev polynomials come up in several places in nearby areas of algebra, however
their appearance here seems to be genuinely new. For example, Chebyshev polynomials
appear in the criterion for semisimplicity of Temperley-Lieb and Jones algebras [11, 12]
(also see [4]). In [4] they appear in three ways—as just mentioned, in giving the dimension
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of a centralizer algebra of a Temperley-Lieb algebra, and in calculating the decomposi-
tion of a Brauer algebra module into Temperley-Lieb algebra modules. In this paper,
Chebyshev polynomials appear as the coefficients in the relations of an algebra.

This paper is organized as follows. In Section 2 we define the nonstandard Hecke alge-

bras Ȟ
(k)
W for any Coxeter group W and establish some of their basic properties. Section

3 contains our main results—a description of the irreducible representations of Ȟ
(k)
3

(Theorem 3.4) and a presentation for Ȟ
(k)
3 (Theorem 3.7). In Section 4 we generalize

these results to nonstandard Hecke algebras Ȟ
(k)
W of dihedral groups. In this case, the

nonstandard braid relation involves a multivariate version of Chebyshev polynomials and

the Ȟ
(k)
W -irreducibles are parameterized by signed compositions of k (see Definition 4.2).

We further show (Section 5) that the nonstandard Hecke algebras of dihedral groups have
bases generalizing the Kazhdan-Lusztig basis of H3 and are cellular algebras in the sense
of Graham and Lehrer [12].

2. Nonstandard Hecke Algebras

After recalling the definition of the (standard) Hecke algebra HW of a Coxeter group
W , we introduce the nonstandard Hecke algebra ȞW of [16]. Hecke algebras are not
Hopf algebras in a natural way, and the nonstandard Hecke algebra ȞW is in a sense the
smallest deformation of HW that also deforms the Hopf algebra structure of the group
algebra ZW . We show that the Hecke algebra RHS2 is a Hopf algebra (for suitable rings

R). We then define the sequence of algebras Ȟ
(k)
W , k ≥ 1, that begins with HW (k = 1)

and ȞW (k = 2). We record some basic facts about the representation theory of these
algebras and define anti-automorphisms that behave like the antipode of a Hopf algebra.

2.1. Let (W,S) be a Coxeter group with length function ℓ. We work over the ground
ring A = Z[u, u−1], the ring of Laurent polynomials in the indeterminate u.

Definition 2.1. The Hecke algebra HW of a Coxeter group (W,S) is the free A-module
with basis {Tw : w ∈ W} and relations generated by

TuTv = Tuv if ℓ(uv) = ℓ(u) + ℓ(v)
(Ts − u)(Ts + u−1) = 0 if s ∈ S.

(3)

For any J ⊆ S, the parabolic subgroup WJ is the subgroup of W generated by J . We let
(HW )J denote the subalgebra of HW with A-basis {Tw : w ∈ WJ}, which is isomorphic
to HWJ

.
For any commutative ring K and ring homomorphism A → K, let KHW = K⊗AHW .

We will often let K = Q(u), the quotient field of A. If the ring K is understood and
A → K is given by u 7→ z, then we also write HW |u=z for K⊗A HW . The Hecke algebra
HW over A is the generic Hecke algebra of W and KHW is a specialization of HW .

We are particularly interested in the type A case in this paper, and in this case (W,S) =
(Sr, {s1, . . . , sr−1}) and we abbreviate HSr

by Hr.

2.2. The u-integers are [k] := uk−u−k

u−u−1 ∈ A. We also use the notation [k] to denote the

set {1, . . . , k}, but these usages should be easy to distinguish from context. We also set
f = [2]2 because this constant appears particularly often.
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Let C ′
s = Ts + u−1 and Cs = Ts − u for each s ∈ S. These are the simplest unsigned

and signed Kazhdan-Lusztig basis elements. They are also proportional to the primitive
central idempotents of K(HW ){s} ∼= KH2, provided the constant [2] is invertible in K;
define p+ = 1

[2]
C ′

s1
(respectively p− = − 1

[2]
Cs1) to be the idempotent corresponding to the

trivial (respectively sign) representation of KH2.
Write ǫ+, ǫ− for the one-dimensional trivial and sign representations of HW , which are

defined by

ǫ+ : C ′
s 7→ [2], ǫ− : C ′

s 7→ 0, s ∈ S.

We identify these algebra homomorphisms ǫ+, ǫ− : HW → A with left HW -modules in
the usual way.

There is an A-algebra automorphism θ : HW → HW defined by θ(Ts) = −T−1
s , s ∈ S.

Let 1op be the A-anti-automorphism of HW given by 1op(Tw) = Tw−1. Let θop be the
A-anti-automorphism of HW given by θop = θ ◦ 1op = 1op ◦ θ. We will establish some
basic properties of these anti-automorphisms in §2.5.

Let η be the unique A-algebra homomorphism from A to HW . At u = 1, the maps
η, ǫ+, 1

op specialize to the unit, counit, and antipode of the Hopf algebra ZW .

2.3. Here we introduce the nonstandard Hecke algebra ȞW from [16] (denoted Br there
in the case W = Sr), and show that RȞ2 is isomorphic to RH2 (for suitable R), thereby
giving a Hopf algebra structure on RH2. We also show that the anti-automorphism 1op

behaves like an antipode of the Hopf algebra-like object ȞW .

Definition 2.2. The nonstandard Hecke algebra ȞW is the subalgebra of HW ⊗ HW

generated by the elements

Ps := C ′
s ⊗ C ′

s + Cs ⊗ Cs, s ∈ S.

We let ∆̌ : ȞW →֒ HW ⊗ HW denote the canonical inclusion, which we think of as a
deformation of the coproduct ∆ZW : ZW → ZW ⊗ ZW , w 7→ w ⊗ w.

The nonstandard Hecke algebra is also the subalgebra of HW ⊗ HW generated by

Qs := f − Ps = −C ′
s ⊗ Cs − Cs ⊗ C ′

s, s ∈ S.

Despite their simple definition, the nonstandard Hecke algebras seem to be extremely
difficult to describe in terms of generators and relations. Indeed, the main purpose of
this paper is to work out such a presentation for dihedral groups W . For the easiest case
W = S2, the story is quite nice.

Proposition 2.3. Set R = A[ 1
[2]
] and R1 = Z[1

2
] (so that R1 is the u = 1 specialization

of R). We have RȞ2
∼= RH2 by 1

f
P1 7→ p+. Then

(i) RH2 is a Hopf algebra with coproduct ∆ = ∆̌, antipode 1op, counit ǫ+, and unit
η.

(ii) the Hopf algebra RH2|u=1, with Hopf algebra structure coming from (i), is
isomorphic to the group algebra R1S2 with its usual Hopf algebra structure.

Moreover, the Hopf algebra structure of (i) is the unique way to make the algebra RH2

into a Hopf algebra so that (ii) is satisfied.
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Proof. The isomorphism RȞ2
∼= RH2 is immediate from the observation that ∆̌( 1

f
Ps) =

p+ ⊗ p+ + p− ⊗ p− is an idempotent in RH2 ⊗RH2.
The axiom for the antipode is a special case of Proposition 2.4 to come (and also easy

to check directly). We need to check the axioms

(ǫ+ ⊗ id) ◦∆ = id = (id⊗ ǫ+) ◦∆,

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

which is easy. For example, for the second, observe that both sides applied to p+ yield

p+ ⊗ p+ ⊗ p+ + p+ ⊗ p− ⊗ p− + p− ⊗ p+ ⊗ p− + p− ⊗ p− ⊗ p+.

It is straightforward to see that (ii) is satisfied. We check only that the coproduct
commutes with specialization, and omit verifying that this is also so for the antipode, the
counit, and the unit:

∆|u=1(
1

2
(1 + s1)) =

1

2
(1 + s1)⊗

1

2
(1 + s1) +

1

2
(1− s1)⊗

1

2
(1− s1)

=
1

2
(1⊗ 1 + s1 ⊗ s1) = ∆R1S2(

1

2
(1 + s1)),

where ∆|u=1 is the specialization of ∆ and ∆R1S2 is the usual coproduct on R1S2.
For the uniqueness statement, we use that RH2 ⊗ RH2 is isomorphic to a product of

matrix algebras. Explicitly,

RH2 ⊗ RH2
∼= R(p+ ⊗ p+)⊕R(p+ ⊗ p−)⊕ R(p− ⊗ p+)⊕R(p− ⊗ p−).

The map ∆ is determined by ∆(p+), and the image of ∆ is isomorphic to RH2 if and
only if ∆(p+) is an idempotent not equal to the identity. We also have that ∆R1S2(p+) =
p+ ⊗ p++ p− ⊗ p−. The only idempotent of RH2⊗RH2 that specializes to ∆R1S2(p+) at
u = 1 is p+⊗p++p−⊗p−, hence this must be ∆(p+) as desired. Additionally, the counit
is determined uniquely by the comultiplication; the only anti-automorphisms of RH2 are
1op and θop, and only 1op satisfies the required axiom. �

Analogous to the trivial and sign representations of HW , there are one-dimensional
trivial and sign representations of ȞW , which we denote by ǫ̌+ and ǫ̌−:

ǫ̌+ : Ps 7→ [2]2, ǫ̌− : Ps 7→ 0, s ∈ S.

For the next proposition, let η, 1op, θop be as in §2.2, and let µ be the multiplication
map for HW .

Proposition 2.4. The involutions 1op and θop are antipodes in the following sense:

µ ◦ (1op ⊗ 1) ◦ ∆̌ = η ◦ ǫ̌+, (4)

µ ◦ (θop ⊗ 1) ◦ ∆̌ = η ◦ ǫ̌−, (5)

where these are equalities of maps from ȞW to HW .

Proof. The right-hand side of (4) is the algebra homomorphism defined by η◦ ǫ̌+(Qs) = 0,
s ∈ S. This is a linear map from ȞW to HW which sends the two-sided ideal generated
by the Qs to 0 and sends 1 to 1, and there is only one linear map with these properties.
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To see that the left-hand side is also this linear map, first observe that it takes Qs to 0
and 1 to 1:

µ ◦ (1op ⊗ 1)(Qs) = µ(Qs) = −C ′
sCs − CsC

′
s = 0, s ∈ S. (6)

Next, let ∆̌(Qs) =
∑

i a
(i) ⊗ b(i) and ∆̌(x) =

∑

j c
(j) ⊗ d(j) for some x ∈ ȞW . Since ∆̌ is

an algebra homomorphism, there holds

µ ◦ (1op ⊗ 1) ◦ ∆̌(Qsx) = µ ◦ (1op ⊗ 1)
(

∑

i(a
(i) ⊗ b(i))

∑

j(c
(j) ⊗ d(j))

)

=
∑

i,j 1
op(c(j))1op(a(i))b(i)d(j)

= 0,

(7)

where the last equality is by (6).
We can similarly show that µ ◦ (1op ⊗ 1) ◦ ∆̌(xQs) = 0 for any x ∈ ȞW . Thus the

two-sided ideal generated by the Qs is sent to zero, so the left and right-hand sides of (4)
agree. Equation (5) is proved in a similar way by replacing Qs with Ps and ǫ+ with ǫ−
above. �

2.4. By Proposition 2.3, we can define ∆(k) : RH2 → RH
⊗k
2 inductively by ∆(k) :=

(∆(k−1) ⊗ 1) ◦∆ = (1⊗∆(k−1)) ◦∆ and ∆(2) := ∆. Explicitly,

∆(k)(p+) =
∑

a∈{+,−}k
|{i:ai=−}| is even

pa1 ⊗ . . .⊗ pak . (8)

It is now natural to generalize ȞW as follows.

Definition 2.5. The nonstandard Hecke algebra Ȟ
(k)
W is the subalgebra of H

⊗k
W gen-

erated by the P(k)
s := [2]k∆

(k)
s (p+) for all s ∈ S, where ∆

(k)
s = ι⊗k

s ◦ ∆(k) and ιs is the

inclusion H2
∼= (HW ){s} →֒ HW . Let ∆̌(1k) : Ȟ

(k)
W →֒ H

⊗k
W be the canonical inclusion.

Set Q(k)
s = [2]k − P(k)

s . The set S of simple reflections of W will always be denoted

{s1, . . . , sr−1} in this paper, and we let P(k)
i1i2...il

be shorthand for P(k)
si1

P(k)
si2

· · · P(k)
sil

. Note

that Ȟ
(2)
W = ȞW , P(2)

s = Ps and Ȟ
(1)
W = HW , P(1)

s = C ′
s, and we set Ȟ

(0)
W = A.

Remark 2.6. Proposition 2.3 supports the idea that the Ȟ
(k)
W are “the smallest ap-

proximation to a Hopf algebra on HW deforming the Hopf algebra ZW .” An interesting

problem is to make this precise by showing that
∏

k≥0 Ȟ
(k)
W (or a similar algebra) is a

universal object in some categorical sense. This may be closely related to the problem
of constructing a right adjoint to the forgetful functor from Hopf algebras to algebras,
which was recently done in [1].

For any nonnegative integers kl, kr with kl+kr = k, we have ∆(k) = (∆(kl)⊗∆(kr))◦∆;
applying this to [2]kp+ yields

P(k)
s = P(kl)

s ⊗ P(kr)
s +Q(kl)

s ⊗Q(kr)
s (9)

= 2P(kl)
s ⊗ P(kr)

s − [2]kl ⊗P(kr)
s − P(kl)

s ⊗ [2]kr + [2]k (10)

for all s ∈ S. As a consequence, there is a canonical inclusion

∆̌(kl,kr) : Ȟ
(k)
W →֒ Ȟ

(kl)
W ⊗ Ȟ

(kr)
W , P(k)

s 7→ P(kl)
s ⊗ P(kr)

s +Q(kl)
s ⊗Q(kr)

s . (11)
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Thus any pair M̌l, M̌r, where M̌l is a Ȟ
(kl)
W -module and M̌r is a Ȟ

(kr)
W -module, gives rise

to the Ȟ
(k)
W -module M̌l ⊗ M̌r by restriction.

We have the following commutativity property

Res
Ȟ

(k)
W

(M̌l ⊗ M̌r) ∼= Res
Ȟ

(k)
W

(M̌r ⊗ M̌l), (12)

where the isomorphism is given by the map swapping tensor factors; this is an Ȟ
(k)
W -

module homomorphism by (9).

There are one-dimensional trivial and sign representations of Ȟ
(k)
W which generalize

those for ȞW = Ȟ
(2)
W defined previously. We also denote these by ǫ̌+ and ǫ̌−:

ǫ̌+ : P(k)
s 7→ [2]k, ǫ̌− : P(k)

s 7→ 0, s ∈ S.

For a ring homomorphism K → A, we have the specialization KȞ
(k)
W := K ⊗A Ȟ

(k)
W

of the nonstandard Hecke algebra. Also, we often abuse notation and write ǫ̌+ for the

KȞ
(k)
W -module K ⊗A ǫ̌+, when K is understood from context; the same goes for all the

other one-dimensional representations in this paper.

2.5. Here we record some useful results about the anti-automorphisms 1op, θop of HW and

their corresponding anti-automorphisms 1op, (θ(k))op of Ȟ
(k)
W . Many of the observations

here are also made in [16, §10].
Any anti-automorphism S of an A-algebra H allows us to define duals of H-modules:

let 〈, 〉 : M⊗M∗ → A be the canonical pairing, where M∗ is the A-module HomA(M,A).
Then the H-module structure on M∗ is defined by

〈m, hm′〉 = 〈S(h)m,m′〉 for any h ∈ H, m ∈ M,m′ ∈ M∗.

We write M⋄ (respectively M#) for the HW -module dual to M corresponding to the
anti-automorphism 1op (respectively θop).

We note that for W = Sr dualization M 7→ M# corresponds to transposing partitions.

Proposition 2.7 ([6] (see also [13, Exercises 2.7, 3.14])). Let Mλ be the Specht module
of Hr of shape λ. Then

M⋄
λ
∼= Mλ and M#

λ
∼= Mλ′ ,

where λ′ is the transpose of the partition λ.

Let Aθ be the subgroup of automorphisms of H
⊗k
W generated by

θi = 1⊗ · · · ⊗ 1⊗ θ ⊗ 1⊗ · · · ⊗ 1,

where the θ appears in the i-th tensor factor. Let A 0
θ be the subgroup of Aθ generated

by θiθj for i, j ∈ [k]. This is a subgroup of index 2 and consists of the involutions having
an even number of θ’s and the rest 1’s.

Proposition 2.8. The elements of Aθ behave well upon restriction to Aut (Ȟ
(k)
W ):

(i) α(P(k)
s ) =

{

P(k)
s if α ∈ A 0

θ

Q(k)
s if α ∈ θ1A

0
θ

for all s ∈ S.

(ii) Ȟ
(k)
W is invariant under the action of Aθ, i.e. α(Ȟ

(k)
W ) = Ȟ

(k)
W for all α ∈ Aθ.
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(iii) The restriction of an element of Aθ to an automorphism of Ȟ
(k)
W (which is

well-defined by (ii)) corresponds to the map Aθ → Aut (Ȟ
(k)
W ), θi 7→ θ(k), where

θ(k) : Ȟ
(k)
W → Ȟ

(k)
W is the A-algebra homomorphism determined by θ(k)(P(k)

s ) =

Q(k)
s for all s ∈ S.

(iv) The homomorphism θ(k) is an involution of Ȟ
(k)
W .

(v) The inclusion ∆̌(kl,kr) of (11) induces a map

Aut (Ȟ
(kl)
W ⊗ Ȟ

(kr)
W ) → Aut (Ȟ

(k)
W ), which sends θ(kl) ⊗ 1 and 1⊗ θ(kr) to θ(k).

Proof. It is enough to check (i) for W = S2, and this can be seen directly from the
observation θ(p+) = p− and by comparing

1

[2]k
Q(k)

1 = ∆(k)(p−) =
∑

a∈{+,−}k
|{i:ai=−}| is odd

pa1 ⊗ . . .⊗ pak

with the similar expression for ∆(k)(p+) in (8). The remaining statements follow easily.
�

There are also anti-automorphisms 1op := 1op⊗1op⊗· · ·⊗1op and (θ(k))op := 1op◦θ(k) of
Ȟ

(k)
W , where θ(k) is defined in Proposition 2.8 (iii). We also write M⋄ (respectively M#)

for the Ȟ
(k)
W -module dual to M corresponding to the anti-automorphism 1op (respectively

(θ(k))op). The next proposition is immediate from Proposition 2.8 (v) and definitions.

Proposition 2.9. Let M̌l be an Ȟ
(kl)
W -module and M̌r an Ȟ

(kr)
W -module and assume that

these are free and finite-dimensional as A-modules. Then

(M̌l ⊗ M̌r)
⋄ ∼= M̌⋄

l ⊗ M̌⋄
r
∼= M̌#

l ⊗ M̌#
r ,

(M̌l ⊗ M̌r)
# ∼= M̌⋄

l ⊗ M̌#
r

∼= M̌#
l ⊗ M̌⋄

r .

3. The nonstandard braid relation

Here we determine the irreducible representations of the nonstandard Hecke algebra

Ȟ
(k)
3 and find that it has a two-dimensional irreducible with defining constant [2]kTj(

1
[2]
)

for each j ∈ [k]. We deduce from this the nonstandard braid relation (2) for Ȟ
(k)
3 .

3.1. In this subsection we let W be any dihedral group, whereas in §3.2–3.3 we focus on
the case W = S3. It will be shown in the course of the next two sections that all of the
two-dimensional irreducible representations of KȞ

(k)
W (for a suitable field K) are of the

form X̌(k)(c) ∼= K2, for some constant c ∈ K, defined by the following matrices giving

the action of P(k)
i on X̌(k)(c):

P(k)
1 7→

(

[2]k c
0 0

)

, P(k)
2 7→

(

0 0
1 [2]k

)

. (13)

Here we have specified a basis (x1, x2) for X̌(k)(c) and are thinking of matrices as act-
ing on the left on column vectors, so that the j-th column of these matrices gives the

coefficients of P(k)
i xj in the basis (x1, x2). The map KȞ

(k)
W → EndK(K

2) specified by
(13) only defines an algebra homomorphism for special values of c (i.e. X̌(k)(c) is only a
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representation of KȞ
(k)
W for special values of c), and these values will be determined in

the course of the proofs below.
Recall that a representation of an algebra over a field K is absolutely irreducible if it is

irreducible over any field extension of K (the appendix of [13] is a good quick reference for
this and other basic definitions and results about finite dimensional algebras over a field).

Suppose that X̌(k)(c) is a KȞ
(k)
W -module. Observe that X̌(k)(c) has a one-dimensional

submodule if and only if

(

0
1

)

or

(

[2]k

−1

)

spans a submodule. Since

(

0
1

)

spans a

submodule if and only if c = 0 and

(

[2]k

−1

)

spans a submodule if and only if c = fk

(recall f = [2]2), we conclude that

X̌(k)(c) is absolutely irreducible ⇐⇒ c 6∈ {0, fk}. (14)

One also checks easily that if X̌(k)(c), X̌(k)(c′) are KȞ
(k)
W -modules, then

X̌(k)(c) ∼= X̌(k)(c′) ⇐⇒ c = c′. (15)

Proposition 3.1. Let kl, kr be positive integers with kl + kr = k. Suppose that X̌l =

X̌(kl)(cl), X̌r = X̌(kr)(cr) are irreducible KȞ
(kl)
W , KȞ

(kr)
W -modules, respectively with con-

stants cl, cr ∈ K. Put al =
√
cl, ar =

√
cr and define

a± = alar ±
√

(fkl − cl)(fkr − cr). (16)

Assume that alar, a± ∈ K and that K is an integral domain in which 2 6= 0. Then

X̌l ⊗ X̌r is a KȞ
(k)
W -module via ∆̌(kl,kr) (see (11)) with the following decomposition into

irreducibles

X̌l ⊗ X̌r
∼=



















X̌(k)(a2+)⊕ X̌(k)(a2−) a2+ 6= fk and a− 6= 0,

ǫ̌+ ⊕ ǫ̌− ⊕ X̌(k)(a2−) a2+ = fk and a− 6= 0,

ǫ̌1 ⊕ ǫ̌2 ⊕ X̌(k)(a2+) a2+ 6= fk and a− = 0,

ǫ̌+ ⊕ ǫ̌− ⊕ ǫ̌1 ⊕ ǫ̌2 a2+ = fk and a− = 0,

(17)

where ǫ̌1 and ǫ̌2 are one-dimensional representations given by

ǫ̌1 : P(k)
1 7→ [2]k, P(k)

2 7→ 0,

ǫ̌2 : P(k)
1 7→ 0, P(k)

2 7→ [2]k.

Remark 3.2. A direct calculation shows that, with the appropriate convention for square
roots,

a2+ = fk ⇐⇒ fkrcl = fklcr,
a− = 0 ⇐⇒ fk = fklcr + fkrcl.

Note that by (14) and (16), our assumptions on K and that X̌l and X̌r are irreducible
imply a2+ 6= a2−. Thus the last three cases of (17) are the only degenerate cases that can
occur.

Proof. Let (xl1, xl2) and (xr1, xr2) be bases for X̌l and X̌r, respectively, corresponding to

the matrices in (13). Using (10) we compute the matrices that give the action of the P(k)
i
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on the KȞ
(k)
W -module X̌l ⊗ X̌r in the basis (xl1 ⊗ xr1, xl1 ⊗ xr2, xl2 ⊗ xr1, xl2 ⊗ xr2):

P(k)
1 7→









[2]k [2]klcr [2]krcl 2clcr
0 0 0 −[2]krcl
0 0 0 −[2]klcr
0 0 0 [2]k









, P(k)
2 7→









[2]k 0 0 0
−[2]kl 0 0 0
−[2]kr 0 0 0

2 [2]kr [2]kl [2]k









(18)

Now set

z1+ =









alara+
−[2]krcl
−[2]klcr
[2]k









, z2+ =









[2]kalara+
−[2]klalara+
−[2]kralara+

a2+









, z1− =









alara−
−[2]krcl
−[2]klcr
[2]k









, z2− =









[2]kalara−
−[2]klalara−
−[2]kralara−

a2−









.

(19)
The vectors z1+, z2+, z1−, z2− were found using the form of the matrices in (18) to

ensure that zi+ and zi− span the ǫ̌+-isotypic component of Res{si}(X̌l ⊗ X̌r) for i = 1, 2.
A direct computation shows that K{z1+, z2+} (respectively K{z1−, z2−}) is a submodule
of X̌l⊗ X̌r provided a+ (respectively a−) is a solution to the following quadratic equation
in the variable y

y2 − 2alary − fk + fkrcl + fklcr = 0. (20)

The solutions to this quadratic equation are given by (16), henceK{z1+, z2+} andK{z1−, z2−}
are submodules.

By comparing the first and last components of zi+, zi−, one checks that if a2+ 6= fk

(respectively a− 6= 0), then K{z1+, z2+} (respectively K{z1−, z2−}) is two-dimensional.
Moreover, by the remark before the proof, a2+ 6= fk (respectively a− 6= 0) implies X̌(k)(a2+)

(respectively X̌(k)(a2−)) is irreducible. Then with the assumptions of the first case of (17),

(z1+, z2+, z1−, z2−) is a basis of X̌l ⊗ X̌r and the action of P(k)
i in this basis is given by

P(k)
1 7→









[2]k a2+ 0 0
0 0 0 0
0 0 [2]k a2−
0 0 0 0









, P(k)
2 7→









0 0 0 0
1 [2]k 0 0
0 0 0 0
0 0 1 [2]k









, (21)

which verifies (17) in this case.
Next suppose a2+ = fk and a− 6= 0, and define z′2+ by

z′2+ :=









0
1
−1
0









.

Then (z1+, z
′
2+, z1−, z2−) is a basis and the action of P(k)

i in this basis is given by

P(k)
1 7→









[2]k 0 0 0
0 0 0 0
0 0 [2]k a2−
0 0 0 0









, P(k)
2 7→









[2]k 0 0 0
0 0 0 0
0 0 0 0
0 0 1 [2]k









. (22)
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The second case of (17) follows. The third and fourth cases of (17) are similar: if a2+ 6= fk

and a− = 0, then (z1+, z2+, z1−, z
′
2−) is a basis, where

z′2− :=









[2]kalar
−[2]klalar
−[2]kralar

a−









.

If a2+ = fk and a− = 0, then (z1+, z
′
2+, z1−, z

′
2−) is a basis of X̌l ⊗ X̌r. �

3.2. The k-th Chebyshev polynomial Tk(x) of the first kind is the polynomial express-
ing cos(kθ) in terms of x = cos(θ). Chebyshev polynomials appear in many areas of
mathematics including numerical analysis, special functions, approximation theory, and
ergodic theory. Explicit formulas, recurrences, and generating functions are known for
Chebyshev polynomials [18], though in this paper all we need are simple trigonometric
identities. Recall from the introduction the constants

a(k) = Tk

( 1

[2]

)

, k ≥ 1. (23)

We will see that [2]ka(j), j ∈ [k] are the defining constants of the two-dimensional irre-

ducible representations of Ȟ
(k)
3 . The first few coefficients [2]ka(k) are

[2]a(1) = 1 = 1
[2]2a(2) = −f + 2 = − u2 − u−2

[2]3a(3) = −3f + 4 = − 3u2 − 2− 3u−2

[2]4a(4) = f 2 − 8f + 8 = u4 − 4u2 − 2− 4u−2 + u−4.

(24)

Though Chebyshev polynomials are usually defined for k ≥ 0, it is convenient to define
them for all integers k. Note that the definition above still makes sense and we have
Tk(x) = T−k(x). Accordingly, we extend the definition a(k) = Tk(

1
[2]
) to all k ∈ Z.

Also let T 1
k (x) be the element of

√
1− x2Z[x] obtained by expressing sin(kx) in terms

of x = cos(θ); more precisely, we should write T 1
k (x) ∈ yZ[x] ⊆ Z[x, y]/(x2 + y2 − 1).

The k-th Chebyshev polynomial Uk(x) of the second kind is the polynomial expressing
sin((k + 1)θ)/ sin(θ) in terms of x = cos(θ). Then we have T 1

k (x) =
√
1− x2Uk−1(x) for

k ≥ 1. Again, we may allow k to be any integer and there holds T 1
−k(x) = −T 1

k (x).

The calculation decomposing the tensor products X̌l ⊗ X̌r (Proposition 3.1) and the
following identity for Chebyshev polynomials are all we need to determine the irreducibles

of Ȟ
(k)
3 .

Lemma 3.3. For non-negative integers kl, kr, there holds the following identity for Cheby-
shev polynomials (omitting the dependence of Tk(x) on x)

Tkl∓kr = TklTkr ± T 1
kl
T 1
kr
.

Hence

[2]ka(kl∓kr) = [2]kla(kl) [2]kra(kr) ±
√

(

fkl − ([2]kla(kl))2
)(

fkr − ([2]kra(kr))2
)

.
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Proof. The first statement is immediate from the trigonometric identity for the cosine of
a sum of angles:

TklTkr ± T 1
kl
T 1
kr

= cos(klθ) cos(krθ)± sin(klθ) sin(krθ) = cos((kl ∓ kr)θ) = Tkl∓kr .

The second statement then follows by setting x = 1
[2]
, multiplying both sides by [2]k and

using T 1
k =

√

1− T 2
k . �

Theorem 3.4. Define M̌ (k) = X̌(k)(([2]ka(k))2). For K = Q(u), the irreducible represen-

tations of KȞ
(k)
3 consist of the trivial and sign representations

ǫ̌+, ǫ̌−,

and the k two-dimensional representations

ǫ⊗k−1
+ ⊗ M̌ (1), ǫ⊗k−2

+ ⊗ M̌ (2), . . . , M̌ (k).

Proof. The proof is by induction on k. It is well known that ǫ+ = KM(3), ǫ− = KM(1,1,1),

and KM(2,1) are the irreducible representations of KH3 = KȞ
(1)
3 , where Mλ is the

Specht module of shape λ. A basis of KM(2,1) is given by the Kazhdan-Lusztig basis:
the subquotient K{C ′

s1
, C ′

s2s1
, C ′

s1s2s1
}/K{C ′

s1s2s1
} of KH3 (considered as a left KH3-

module) is equal to KM(2,1). In the natural basis (C ′
s1
, C ′

s2s1
) of this module, the matrices

for left multiplying by P(1)
i = C ′

si
are the same as those defining M̌ (1) = X̌(1)(1); the

Kazhdan-Lusztig basis elements above are given explicitly by C ′
s2s1

= C ′
s2
C ′

s1
, C ′

s1s2s1
=

C ′
s1
C ′

s2
C ′

s1
− C ′

s1
. This verifies the result for k = 1. Now assume k > 1.

Since KȞ
(k)
3 is a subalgebra of KH3 ⊗KȞ

(k−1)
3 , every irreducible representation of

KȞ
(k)
3 belongs to the composition series of Xl⊗X̌r for some irreducible KH3-module Xl

and irreducible KȞ
(k−1)
3 -module X̌r. From the case Xl = ǫ+, we conclude by induction

that ǫ̌+, ǫ̌−, and ǫ⊗j
+ ⊗ M̌ (k−j), j ∈ [k − 1] are distinct irreducibles of KȞ

(k)
3 . To obtain

the complete list of irreducibles, by commutativity (12), it remains to decompose M̌ (1) ⊗
M̌ (k−1) and ǫ̌− ⊗ M̌ (k−1) into irreducibles.

Decomposing M̌ (1) ⊗ M̌ (k−1) into irreducibles is the crux of the proof, and this is a
special case of Proposition 3.1. Note that ǫ⊗2

+ ⊗ M̌ (k−2) = X̌(k)(([2]ka(k−2))2). Then by
Proposition 3.1 and Lemma 3.3 with kl = 1, kr = k − 1, M̌ (1) ⊗ M̌ (k−1) decomposes into
irreducibles as

M̌ (1) ⊗ M̌ (k−1) ∼=
(

ǫ⊗2
+ ⊗ M̌ (k−2)

)

⊕M̌ (k) if k > 2, (25)

M̌ (1) ⊗ M̌ (1) ∼= ǫ̌+ ⊕ ǫ̌− ⊕M̌ (2) if k = 2. (26)

Finally, ǫ−⊗M̌ (k−1) ∼= ǫ⋄−⊗(M̌ (k−1))⋄ ∼= ǫ+⊗(M̌ (k−1))#, where the second isomorphism

is by Proposition 2.9 and the first is by M̌ (k−1) ∼= (M̌ (k−1))⋄ ∼= (M̌ (k−1))#. This last fact
follows by induction using (25) and (26); the base case M̌ (1) ∼= (M̌ (1))⋄ ∼= (M̌ (1))# is the
r = 3 case of Proposition 2.7. Thus the irreducible constituent of ǫ− ⊗ M̌ (k−1) is already
in our list.

It remains to check that M̌ (k) is distinct from ǫ⊗j
+ ⊗ M̌ (k−j), j ∈ [k − 1]. This holds by

(15) and the fact that Tk(x) is a degree k polynomial in x, implying [2]ka(j) is a polynomial
in the u-integer [2] whose constant coefficient is nonzero if and only if j = k. �
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Corollary 3.5. The algebra KȞ
(k)
3 is split semisimple for K = Q(u).

Proof. Proceed by induction on k. We can view the inclusion ∆̌(1,k−1) : Ȟ
(k)
3 → H3 ⊗

Ȟ
(k−1)
3 of (11) as one of left Ȟ

(k)
3 -modules. Since localizations are flat, K is a flat

A-module; thus, KȞ
(k)
3 → KH3 ⊗ KȞ

(k−1)
3 is also an inclusion (this fails for the

specialization A → Z, u 7→ 1). Hence to show that KȞ
(k)
3 is semisimple it suffices

to show that Xl ⊗ X̌r is a direct sum of irreducible KȞ
(k)
3 -modules for any irreducible

KH3-module Xl and irreducible KȞ
(k−1)
3 -module X̌r. The proof above gives an explicit

decomposition of Xl ⊗ X̌r into irreducibles.

The algebra KȞ
(k)
3 is split because the irreducibles ǫ⊗k−j ⊗ M̌ (j) ∼= X̌(k)(([2]ka(j))2),

j ∈ [k] are absolutely irreducible by (14). �

Remark 3.6. It was claimed in [16] that RȞr is semisimple for any specializationA → R,
however there is a mistake in the proof. In fact, the specialization u 7→ 1 is not semisimple
if r > 2. The proof was later repaired in [5, Proposition 11.8] to show that Q(u)Ȟr is
semisimple. Since Q(u) is a perfect field, it follows that Q(u)Ȟr is a separable algebra,
which means that KȞr is semisimple for any field extension K ⊇ Q(u). So, for instance,

R(u)Ȟr is also semisimple. We strongly suspect that all the algebras Q(u)Ȟ
(k)
W are

semisimple for W any finite Weyl group, but we do not yet have a proof.

3.3. Now we can determine the nonstandard braid relation for Ȟ
(k)
3 . Define

Fk(y) = (y − ([2]ka(1))2)(y − ([2]ka(2))2) . . . (y − ([2]ka(k))2),

a polynomial in an indeterminate y with coefficients in A.

Theorem 3.7. The algebra Ȟ
(k)
3 is the associative A-algebra generated by P(k)

s , s ∈ S =
{s1, s2}, with quadratic relations

(P(k)
s )2 = [2]kP(k)

s , s ∈ S, (27)

and nonstandard braid relation

P(k)
1 Fk(P(k)

21 ) = P(k)
2 Fk(P(k)

12 ). (28)

Proof. The quadratic relations follow from the fact that H2 is a Hopf algebra.
Set

h := P(k)
1 Fk(P(k)

21 )− P(k)
2 Fk(P(k)

12 ) ∈ Ȟ
(k)
3 .

We next show that the nonstandard braid relation holds in KȞ
(k)
3 , for K = Q(u), i.e.

1⊗h = 0 inKȞ
(k)
3 . To see this, one computes easily using (13) that P(k)

2 (P(k)
12 −([2]ka(j))2)

and P(k)
1 (P(k)

21 − ([2]ka(j))2) act on ǫ⊗k−j
+ ⊗ M̌ (j) by 0. We also have that P(k)

i acts by 0
on ǫ̌−. Further noting that both sides of (28) act on ǫ̌+ by the constant [2]kFk([2]

2k),
we conclude using Theorem 3.4 that 1 ⊗ h acts by 0 on all irreducible representations of

KȞ
(k)
3 . The semisimplicity of KȞ

(k)
3 then implies 1⊗ h = 0.

We next claim that Ȟ
(k)
3 → KȞ

(k)
3 is injective, which would imply h = 0, i.e. the

nonstandard braid relation holds. The claim holds because KȞ
(k)
3 is the localization of

Ȟ
(k)
3 at the multiplicative set U = A\{0} and U contains no zero divisors (the facts

about localization needed for this would be standard in the commutative setting, and it
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is not difficult to show that they carry over to the case that the multiplicative set lies in

the center of the ring). The multiplicative set U contains no zero divisors because Ȟ
(k)
3

is a subalgebra of the free A-module H
⊗k
W .

To see that no other relations hold in Ȟ
(k)
3 , let H be the A-algebra generated by the

P(k)
i with relations (27) and (28). The algebra H is a free A-module with basis given by

the 4k + 2 monomials

1, (P(k)
12 )j, (P(k)

21 )j , P(k)
1 (P(k)

21 )j−1, P(k)
2 (P(k)

12 )j−1,P(k)
1 (P(k)

21 )k, j ∈ [k].

By the split semisimplicity of Q(u)Ȟ
(k)
3 , dimQ(u)Q(u)Ȟ

(k)
3 = 4k + 2 = dimQ(u) Q(u)H .

An additional relation holding in Ȟ
(k)
3 and not in H would force dimQ(u)Q(u)Ȟ

(k)
3 <

dimQ(u)Q(u)H , hence H ∼= Ȟ
(k)
3 . �

In the proof above we have shown that

Corollary 3.8. The algebra Ȟ
(k)
3 is free as an A-module.

4. Generalizations to dihedral groups

Let W be the dihedral group of order 2m with simple reflections S = {s1, s2} and
relations

s2 = id, s ∈ S
(s1s2)

m = id.
(29)

We will generalize the results of the previous section to the algebras Ȟ
(k)
W . The two-

dimensional irreducibles of Ȟ
(k)
W are indexed by signed compositions of k (Definition 4.2)

and their defining constants are given by the evaluation of a multivariate generalization
of Chebyshev polynomials. These multivariate Chebyshev polynomials seem to be new.
For instance, they do not agree with those studied in [3].

4.1. We first recall the description of the irreducible representations of HW .

Theorem 4.1 (Kilmoyer-Solomon (see, for instance, [10, Theorem 8.3.1])). Let ζ be a
primitive m-th root of unity and define wj = 2+ ζj + ζ−j. Set n = m−2

2
if m is even and

n = m−1
2

if m is odd. Suppose K is a subfield of C(u) containing the wj. The irreducible
representations of KHW consist of

(a) the trivial and sign representations ǫ+, ǫ−,

(b) n two-dimensional representations denoted Mj , j ∈ [n], where Mj = X̌(1)(wj),
(c) if m is even, two one-dimensional representations ǫ1 and ǫ2 determined by

ǫ1 : C ′
1 7→ [2], C ′

2 7→ 0,

ǫ2 : C ′
1 7→ 0, C ′

2 7→ [2].

Throughout this section, W denotes the dihedral group of order 2m and we maintain
the notation n, wj,Mj , etc. of Theorem 4.1.
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4.2. Here we introduce the combinatorics and multivariate generalization of Chebyshev

polynomials needed to describe the irreducibles of Ȟ
(k)
W .

Definition 4.2. A signed n-composition of k is an n-vector k = (k1, . . . , kn) of integers
such that

∑n

i=1 |ki| = k. If k is a signed composition of k, we also write |k| = k. Two
signed n-compositions k,k′ are equivalent if k = k′ or k = −k′.

Let SCompn,k be the set of equivalence classes of signed n-compositions of k. Write
SCompn,≤k =

⋃

1≤k′≤k SCompn,k′ and SCompn,<k =
⋃

1≤k′<k SCompn,k′.

Example 4.3. The signed 2-compositions of 3, with equivalent compositions in the same
column, are

(3, 0) (2, 1) (2, -1) (1, 2) (1, -2) (0, 3)
(-3, 0) (-2, -1) (-2, 1) (-1, -2) (-1, 2) (0, -3).

Since the number of i-compositions of k is
(

k−1
i−1

)

, we have the enumerative result

|SCompn,k| =
n
∑

i=1

2i−1

(

n

i

)(

k − 1

i− 1

)

.

Definition 4.4. Let k be a signed n-composition of k. The multivariate Chebyshev
polynomial Tk(x1, . . . , xn, y1, . . . , yn) ∈ R is the polynomial expressing
cos(k1θ1 + k2θ2 + · · ·+ knθn) in terms of xj = cos(θj), yj = sin(θj), where

R = Z[x1, . . . , xn, y1, . . . , yn]/
⊕

j

(x2
j + y2j − 1).

Similarly, T 1
k
(x1, . . . , xn, y1, . . . , yn) ∈ R is the polynomial expressing

sin(k1θ1 + k2θ2 + · · ·+ knθn) in terms of xj = cos(θj), yj = sin(θj).

The polynomials Tk, T
1
k
can be expressed in terms of the univariate polynomials T 0

k (x) :=
Tk(x, y) and T 1

k (x, y) = yUk−1(x) (as defined in §3.2) explicitly as follows. Let F2 be the
finite field of order 2. If k is an n-vector, then a vector α ∈ Fn

2 is k-supported if kj = 0
implies αj = 0. There holds

Tk(x1, . . . , xn, y1, . . . , yn) =
∑

α k-supported,
|α| even

∏

j∈[n]
T

αj

kj
(xj , yj), (30)

T 1
k
(x1, . . . , xn, y1, . . . , yn) =

∑

α k-supported,
|α| odd

∏

j∈[n]
T

αj

kj
(xj , yj). (31)

Fix once and for all square roots
√
wj and

√

f − wj in some field K containing A. For

instance, we may choose
√
wj = 2 cos( jπ

m
) if K contains R.

Definition 4.5. Define A∗ = A[
√
w1, . . . ,

√
wn,

√
f − w1, . . . ,

√
f − wn]. For each signed

n-composition k of k, define the following constants, which after being multiplied by [2]k,
belong to A∗:

• ak = Tk

(√
w1

[2]
, . . . ,

√
wn

[2]
, 1
[2]

√
f − w1, . . . ,

1
[2]

√
f − wn

)

,

• a1
k
= T 1

k

(√
w1

[2]
, . . . ,

√
wn

[2]
, 1
[2]

√
f − w1, . . . ,

1
[2]

√
f − wn

)

.
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To better understand these coefficients, it is helpful to compute the specializations

(ak)|u=1 = cos
( π

m

n
∑

j=1

jkj

)

, (a1
k
)|u=1 = sin

( π

m

n
∑

j=1

jkj

)

. (32)

4.3. LetK be the quotient field ofA∗. We give names to the two-dimensional irreducibles

of KȞ
(k)
W :

Ň
(k)
k′ := X̌(k)(([2]kak′)2) k′ ∈ SCompn,≤k,

Ň
1(k)
k′ := X̌(k)(([2]ka1

k′)2) ∼= ǫ1 ⊗ Ň
(k−1)
k′ k′ ∈ SCompn,<k.

(33)

Note that these definitions make sense because ([2]kak′)2 and ([2]ka1
k′)2 are independent

of the equivalence class of k′. The isomorphism in the second line will be seen in the

course of the proof below. We also remark that Ň
(k)
k′

∼= ǫ⊗k−k′

+ ⊗ Ň
(k′)
k′ , where k′ = |k′|,

is an isomorphism of KȞ
(k)
W -modules. In the special case that k has only one nonzero

component kj = k, Ň
(k)
k

∼= X̌(k)(([2]kTk(
√
wj

[2]
))2) is similar to the representation M̌ (k) in

the W = S3 case.

Theorem 4.6. Let W,m, and n be as in Theorem 4.1. For K the quotient field of A∗,

the irreducible representations of KȞ
(k)
W consist of

(a) the trivial and sign representations ǫ+, ǫ−,

(b) for each k′ ∈ SCompn,≤k, the two-dimensional representation Ň
(k)
k′ ,

(c) if m is even, two one-dimensional representations ǫ̌1 ∼= ǫ1 ⊗ ǫ⊗k−1
+ and ǫ̌2 ∼=

ǫ2 ⊗ ǫ⊗k−1
+ given by

ǫ̌1 : P(k)
1 7→ [2]k, P(k)

2 7→ 0,

ǫ̌2 : P(k)
1 7→ 0, P(k)

2 7→ [2]k,

(d) if m is even, for each k′ ∈ SCompn,<k, the two-dimensional representation

Ň
1(k)
k′ .

Proof. The proof is by induction on k and similar to that of Theorem 3.4. The base case
k = 1 is Theorem 4.1.

As in the proof of Theorem 3.4, it suffices to decompose Xl ⊗ X̌r into irreducibles for

every irreducible KHW -module Xl and irreducible KȞ
(k−1)
W -module X̌r. The calculation

we need is a special case of the following: suppose that kl, kr are positive integers such
that k = kl + kr and kl,kr are signed n-compositions of kl, kr respectively. Then by

Proposition 3.1 and Lemma 4.8 (below), the KȞ
(k)
W -module Ň

(kl)
kl

⊗ Ň
(kr)
kr

decomposes
into irreducibles as (assume without loss of generality that if kl is equivalent to kr, then
kl = kr)

Ň
(kl)
kl

⊗ Ň
(kr)
kr

∼= Ň
(k)
kl−kr

⊕ Ň
(k)
kl+kr

if kl 6= kr, (34)

Ň
(kl)
kl

⊗ Ň
(kr)
kr

∼= ǫ̌+ ⊕ ǫ̌− ⊕ Ň
(k)
kl+kr

if kl = kr. (35)

In particular, if we are given some signed n-composition k of k, then we may certainly
choose kl,kr such that kl + kr = k. Thus the first summand of the right-hand side of
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(34) is Ň
(k)
k

, so this is a representation of KȞ
(k)
W . And certainly |kl − kr|, |kl + kr| ≤ k,

so the irreducibles on the right-hand side of (34) and (35) are in our list.
We now must consider the cases Xl = ǫ+, ǫ−, ǫ1, ǫ2. For the case Xl = ǫ+, we have

ǫ+⊗Ň
(k−1)
k′

∼= Ň
(k)
k′ and ǫ+⊗Ň

1(k−1)
k′

∼= Ň
1(k)
k′ , and these are in our list of irreducibles (where

k′ ∈ SCompn,≤k−1, k
′ ∈ SCompn,<k−1 for the first, second isomorphism respectively).

Next, we consider the case Xl = ǫ−. We have

ǫ− ⊗ X̌r
∼= ǫ− ⊗ ((X̌r)

⋄)⋄ ∼= ǫ+ ⊗ ((X̌r)
⋄)#, (36)

where the second isomorphism is by Proposition 2.9. Hence this case follows from the
Xl = ǫ+ case.

Finally, we consider the case that m is even and Xl = ǫ1 or Xl = ǫ2. The action of P(k)
i

on ǫ1 ⊗ X̌(k−1)(c) is given by

P(k)
1 7→

(

[2]k [2]c
0 0

)

, P(k)
2 7→

(

[2]k 0
−[2] 0

)

. (37)

Changing to the basis
((

1
0

)

,

(

[2]k

[2]

))

shows that ǫ1 ⊗ X̌(k−1)(c) ∼= X̌(k)(fk − cf), hence ǫ1 ⊗ Ň
(k−1)
k′

∼= Ň
1(k)
k′ . A similar compu-

tation shows that ǫ2 ⊗ Ň
(k−1)
k′

∼= Ň
1(k)
k′ . Also note ǫ1 ⊗ ǫ̌1 ∼= ǫ̌+, ǫ1 ⊗ ǫ̌2 ∼= ǫ̌−, ǫ2 ⊗ ǫ̌2 ∼= ǫ̌+,

and ǫ2 ⊗ ǫ̌1 ∼= ǫ̌−.
It remains to prove that the list of irreducibles is distinct, and this is Proposition 4.9

(below). �

Corollary 4.7. The algebra KȞ
(k)
W is split semisimple for K the quotient field of A∗,

where A∗ is as in Definition 4.5.

Proof. This follows from the proof above, similar to the W = S3 case. The base case
k = 1 requires the split semisimplicity of KHW . A proof of this is given in [10, Corollary
8.3.2]. �

Lemma 4.8. For kl,kr signed n-compositions of kl, kr respectively, there holds

Tkl∓kr
= Tkl

Tkr
± T 1

kl
T 1
kr
.

Proof. This is immediate from the trigonometric identity for the cosine of a sum of angles:

Tkl
Tkr

± T 1
kl
T 1
kr

= cos(kl1θ1 + · · ·+ klnθn) cos(kr1θ1 + · · ·+ krnθn)±
sin(kl1θ1 + · · ·+ klnθn) sin(kr1θ1 + · · ·+ krnθn)

= cos((kl1 ∓ kr1)θ1 + · · ·+ (kln ∓ krn)θn)
= Tkl∓kr

.

(38)

�

Proposition 4.9. The coefficients ([2]kak′)2, k′ ∈ SCompn,≤k, together with, if m is even,

([2]ka1
k′)2, k′ ∈ SCompn,<k, are distinct elements of A∗ (see Definition 4.5).
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Proof. It suffices to consider the specializations σ : A → R, σ(u) ∈ R>0. Set x =
1

σ(u)+σ(u−1)
; the image of the map R>0 → R, σ(u) 7→ x is (0, 1

2
]. If m is odd, it suffices to

show that for any signed n-compositions k′,k′′,

cos2(k′
1 arccos(

√
w1x)+· · ·+k′

n arccos(
√
wnx)) = cos2(k′′

1 arccos(
√
w1x)+· · ·+k′′

n arccos(
√
wnx))

(an equality of real-valued functions on (0, 1
2
]) implies k′ is equivalent to k′′. Observe that

cos2(a) = cos2(b), a, b ∈ R, if and only if

a+ b ∈ 2πZ ∪ (π + 2πZ) or a− b ∈ 2πZ ∪ (π + 2πZ).

Define the functions α± : (0, 1
2
] → R by

x 7→ (k′
1 ± k′′

1) arccos(
√
w1x) + · · ·+ (k′

n ± k′′
n) arccos(

√
wnx)

If there exists x0 ∈ (0, 1
2
) such that α+(x0) /∈ 2πZ ∪ (π + 2πZ), then α−(x) is constant

in some neighborhood N ′ of x0. Otherwise, α+ is constant on (0, 1
2
). Since we can

choose square roots such that
√
wj = 2 cos( jπ

m
) ∈ (0, 2), the result follows from the lemma

below with zj = 2 cos( jπ
m
). The additional arguments needed in the case m is even are

similar. �

We are grateful to Sergei Ivanov for the proof of the following lemma.

Lemma 4.10. Suppose g(x) =
∑∞

i=0 aix
i is a non-polynomial real analytic function,

convergent to this series on a neighborhood N of the origin. If z1, . . . , zn are distinct
positive real numbers, then the functions 1, g(z1x), . . . , g(znx), with domains restricted to
N ′ for some N ′ ⊆ N having a limit point in N , are linearly independent over R.

Proof. Suppose for a contradiction that c = c1g(z1x)+ · · ·+cng(znx), c, cj ∈ R with some
cj nonzero. Assume without loss of generality that all of the cj are nonzero and that z1
is the largest of the zj . Then

c =
∞
∑

i=0

(

n
∑

j=1

cjz
i
j

)

aix
i

holds for all x ∈ N ′ implies
∑

j cjz
i
j = 0 for all i > 0 such that ai 6= 0. For large i, the

term c1z
i
1 dominates this sum, hence c1 = 0, contradiction. �

4.4. Now we can determine the nonstandard braid relation for Ȟ
(k)
W in the case that W

is the dihedral group of order 2m. Define

Gm,k(y) =















∏

k′∈SCompn,≤k

(y − ([2]kak′)2) if m is odd,

y
∏

k′∈SCompn,≤k

(y − ([2]kak′)2)
∏

k′∈SCompn,<k

(y − ([2]ka1
k′)2) if m is even.

(39)

Theorem 4.11. Let W,m, and n be as in Theorem 4.1. The algebra A∗Ȟ
(k)
W is the

associative A∗-algebra generated by P(k)
s , s ∈ S = {s1, s2}, with quadratic relations

(P(k)
s )2 = [2]kP(k)

s , s ∈ S, (40)
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and nonstandard braid relation

P(k)
1 Gm,k(P(k)

21 ) = P(k)
2 Gm,k(P(k)

12 ) if m is odd, (41)

Gm,k(P(k)
21 ) = Gm,k(P(k)

12 ) if m is even. (42)

Proof. The proof is similar to that of Theorem 3.7. In the case m is even, we need to

check that both sides of (42) act on ǫ̌1 and ǫ̌2 by 0. This is clear since P(k)
12 acts on these

representations by 0. �

In fact, we can deduce a stronger statement, which does not seem to be easy to prove
directly.

Corollary 4.12. The polynomial Gm,k(y) belongs to A[y]. Therefore Theorem 4.11 holds
with A in place of A∗.

Proof. Let K (respectively K∗) be the field of fractions of A (respectively A∗). Let F

be the A-algebra generated by P(k)
s , s ∈ S, with quadratic relations (40). The ideal of

relations I is defined by the exact sequence

0 → I → F → Ȟ
(k)
W → 0. (43)

Since localizations are flat and free modules are flat, the sequence remains exact after
tensoring with K and K∗. Thus Theorem 4.11 says that

h := P(k)
1 Gm,k(P(k)

21 )− P(k)
2 Gm,k(P(k)

12 ) ∈ K∗F

generates K∗I if m is odd (the m even case is similar).
Now choose a graded lexicographic term order on monomials in F and let {g1, g2, . . .}

be a Groebner basis for KI. There exists an i such that gi and h have the same leading
monomial. We must then have gi = ch, c ∈ K∗, because if not we could cancel the leading
terms of gi and h, contradicting that {h} is a Groebner basis of K∗I. Since gi ∈ KF,
and the leading coefficient of h is 1, we must have c ∈ K. It follows that h ∈ KF and
KI = (h). The desired conclusion I = (h) then follows by repeating the argument from
the proof of Theorem 3.7. �

We may also conclude, as in the W = S3 case,

Corollary 4.13. The algebra Ȟ
(k)
W is free as an A-module.

5. A cellular basis for Ȟ
(k)
W

Graham and Lehrer’s theory of cellular algebras [12] formalizes the notion of an algebra
with a basis well-suited for studying representations of the algebra. The theory is modeled
after the Kazhdan-Lusztig basis of Hr in which a basis element C ′

w is naturally labeled
by the insertion and recording tableaux of w. We briefly introduce this theory (following

some of the conventions in [13]) and show that RȞ
(k)
W (for R a suitable localization of

A∗) is a cellular algebra with a cellular basis generalizing the Kazhdan-Lusztig basis of
H3 and the basis of Ȟ3 given in [16].
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5.1. Let H be an algebra over a commutative ring R.

Definition 5.1. Suppose that (Λ,≥) is a (finite) poset and that for each λ ∈ Λ there is
a finite indexing set T (λ) and distinct elements Cλ

ST ∈ H for all S, T ∈ T (λ) such that

C = {Cλ
ST : λ ∈ Λ and S, T ∈ T (λ)}

is a (free) R-basis of H . For each Λ′ ⊆ Λ let HΛ′ be the R-submodule of H with basis
{Cµ

ST : µ ∈ Λ′ and S, T ∈ T (µ)}; write Hλ, H<λ in place of H{λ}, H{µ∈Λ:µ<λ}.
The triple (C,Λ, T ) is a cellular basis of H if

(i) the R-linear map ∗ : H → H determined by (Cλ
ST )

∗ = Cλ
TS, for all λ ∈ Λ and

all S and T in T (λ), is an algebra anti-isomorphism of H ,

(ii) for any λ ∈ Λ and h ∈ H there exist rS′,S ∈ R, for S ′, S ∈ T (λ), such that for
all T ∈ T (λ)

hCλ
ST ≡

∑

S′∈T (λ)

rS′,SC
λ
S′T mod H<λ.

If H has a cellular basis then we say that H is a cellular algebra.

The cellular basis for RȞ
(k)
W (R to be specified) is similar to the “banal” example of

[12], which we now recall.

Example 5.2. For each element λ ∈ Λ, we are given an element σλ of R. Let H =
R[y]/g(y) where g(y) =

∏

λ∈Λ(y − σλ). Choose a partial order < on Λ such that for each
incomparable pair µ, λ ∈ Λ, the element σµ − σλ ∈ R is invertible (for example, < can be
a total order and the σλ can be any elements of any commutative ring R). For λ ∈ Λ, let
T (λ) = {λ} and set

Cλ
λ,λ = Cλ =

∏

µ�λ

(y − σµ).

The triple ({Cλ}λ∈Λ,Λ, T ) is a cellular basis of H : one checks that {Cλ}λ∈Λ is an
R-basis by evaluating a linear relation

∑

λ∈Λ aλC
λ = 0 at y = σµ for µ a maximal

element of Λ; one concludes that aµ = 0 and shows by induction that the other aλ’s are
0. Similar considerations show that for any λ ∈ Λ, {Cµ : µ < λ} is an R-basis of the
ideal of H generated by

∏

µ6<λ(y − σµ). We conclude that for h(y) ∈ R[y], there holds

h(y)Cλ ≡ h(σλ)C
λ mod H<λ.

The data for the cellular basis of RȞ
(k)
W is as follows:

• Λ = Λ1 ∪ Λ2, where

• Λ1 =

{

{ǫ̌+, ǫ̌−} if m is odd,

{ǫ̌+, ǫ̌−, ǫ̌1, ǫ̌2} if m is even,

• Λ2 =

{

SCompn,≤k if m is odd,

SCompn,≤k ⊔ SComp1
n,<k if m is even,

• T (α) = {α}, α ∈ Λ1,
• T (k) = {1, 2},k ∈ Λ2.
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The set SComp1
n,<k is equal to SCompn,<k and is decorated with a superscript 1 to distin-

guish its elements from those of SCompn,≤k. It is convenient to define σk for all k ∈ Λ2

by

σk = [2]kak, k ∈ SCompn,≤k,
σk = [2]ka1

k
, k ∈ SComp1

n,<k and m is even,

where ak, a
1
k
are as in Definition 4.5.

Choose a partial order on Λ2 such that for each incomparable pair k,k′ ∈ Λ2, the
constant σ2

k
− σ2

k′ is invertible in R. Then let the poset on Λ be that of Λ2 with the
elements of Λ1 added as in the following diagrams.

ǫ̌− ǫ̌−

Λ2 Λ2

♦♦
♦♦
♦

❖❖
❖❖

❖

ǫ̌1
◆◆

◆◆
◆ ǫ̌2

♣♣
♣♣
♣

ǫ̌+ ǫ̌+

m odd m even

(44)

The cellular basis C of RȞ
(k)
W consists of, if m is odd,

C ǫ̌− := 1,

Ck

11 := σkP(k)
1

∏

k′ 6≤k
(P(k)

21 − σ2
k′),

Ck

21 := P(k)
21

∏

k′ 6≤k
(P(k)

21 − σ2
k′),

Ck

22 := σkP(k)
2

∏

k′ 6≤k
(P(k)

12 − σ2
k′),

Ck

12 := P(k)
12

∏

k′ 6≤k
(P(k)

12 − σ2
k′),

C ǫ̌+ := P(k)
1

∏

k′ 6≤ǫ̌+
(P(k)

21 − σ2
k′),

(45)

for all k ∈ Λ2 and the products are over all k′ ∈ Λ2 satisfying the stated conditions.

Note that the quantity defining C ǫ̌+ above is exactly P(k)
1 Gm,k(P(k)

21 ), equal to P(k)
2 Gm,k(P(k)

12 )
by the nonstandard braid relation (41).

If m is even, then the cellular basis C consists of

C ǫ̌− := 1,

Ck

11 := σkP(k)
1

∏

k′ 6≤k
(P(k)

21 − σ2
k′),

Ck

21 := P(k)
21

∏

k′ 6≤k
(P(k)

21 − σ2
k′),

Ck

22 := σkP(k)
2

∏

k′ 6≤k
(P(k)

12 − σ2
k′),

Ck

12 := P(k)
12

∏

k′ 6≤k
(P(k)

12 − σ2
k′),

C ǫ̌1 := P(k)
1

∏

k′ 6≤ǫ̌1
(P(k)

21 − σ2
k′),

C ǫ̌2 := P(k)
2

∏

k′ 6≤ǫ̌2
(P(k)

12 − σ2
k′),

C ǫ̌+ := P(k)
12

∏

k′ 6≤ǫ̌+
(P(k)

12 − σ2
k′),

(46)

where the products are over all k′ ∈ Λ2 satisfying the stated conditions. The quantity

defining C ǫ̌+ above is exactly Gm,k(P(k)
12 ), equal to Gm,k(P(k)

21 ) by the nonstandard braid
relation (42).
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Proposition 5.3. Let Λ, T , C and σk be as above and let R be a ring containing A∗ such

that σk is invertible in R for all k ∈ Λ2. The algebra H = RȞ
(k)
W is a cellular algebra

with cellular basis (C, Λ̂, T ). The anti-automorphism ∗ of Definition 5.1 (i) is equal to
1op of §2.5.
Proof. We must show that C is an R-basis of H . As an (H,H)-bimodule, the (ǫ̌+, ǫ̌+)-
isotypic component of the restriction of H to a (H{s1}, H{s1})-bimodule has an R-basis

consisting of monomials of the form P(k)
1 (P(k)

21 )j . The set {Ck

11 : k ∈ Λ2} ∪ {ǫ̌+} (unioned
with {ǫ̌1} if m is even) is also an R-basis for this space by the same argument as in
Example 5.2. Similar considerations show that for any λ ∈ Λ and i, j ∈ {1, 2}, the set

{Ck
′

ij : k′ < λ} ∪
{

{ǫ̌+, ǫ̌i} if m is even and i = j,

{ǫ̌+} otherwise,

is an R-basis for the (ǫ̌+, ǫ̌+)-isotypic component of the (H{si}, H{sj})-restriction of Iλ,

where Iλ is the two-sided ideal of H generated by
∏

k′ 6<λ(P
(k)
12 −σ2

k′). That C is an R-basis
of H follows by applying this to λ = ǫ̌−. We may also deduce that

P(k)
1 Ck

21 = P(k)
121

∏

k′ 6≤k

(P(k)
21 − σ2

k′) = P(k)
1 (P(k)

21 − σ2
k
+ σ2

k
)
∏

k′ 6≤k

(P(k)
21 − σ2

k′)

= P(k)
1

∏

k′ 6<k

(P(k)
21 − σ2

k′) + σkC
k

11 ≡ σkC
k

11 mod H<k. (47)

Similarly, P(k)
2 Ck

12 ≡ σkC
k

22 mod H<k. Thus the left action of H on H≤k/H<k in the
basis (Ck

11, C
k

21, C
k

22, C
k

12) is given by

P(k)
1 7→









[2]k σk 0 0
0 0 0 0
0 0 0 0
0 0 σk [2]k









, P(k)
2 7→









0 0 0 0
σk [2]k 0 0
0 0 [2]k σk

0 0 0 0









. (48)

If m is odd, this verifies condition (ii) of Definition 5.1.
If m is even, we also need the following, immediate from the definition of C in (46),

P(k)
1 ǫ̌1 = [2]kǫ̌1, P(k)

2 ǫ̌1 = ǫ̌+ ≡ 0 mod H<ǫ̌1,

P(k)
1 ǫ̌2 = ǫ̌+ ≡ 0 mod H<ǫ̌2, P(k)

2 ǫ̌2 = [2]kǫ̌2.

The claim that ∗ = 1op is straightforward. �

5.2. Cellular algebras are well-suited for studying specializations. For this, we need some
additional definitions from [12]. Let Mλ be the left H-module that is the submodule of
H≤λ/H<λ with R-basis {Cλ

ST : S ∈ T (λ)} for some T ∈ T (λ); this basis is independent
of T and we denote its elements by Cλ

S = Cλ
ST , S ∈ T (λ).

Definition 5.4. For λ ∈ Λ, the bilinear form φλ : Mλ × Mλ → R is defined in the
basis {Cλ

S : S ∈ T (λ)} as follows. For S, T ∈ T (λ) let φλ(C
λ
S , C

λ
T ) be the element of R

determined by
Cλ

USC
λ
TV ≡ φλ(C

λ
S , C

λ
T )C

λ
UV mod H<λ,

where U and V are any elements of T (λ).
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Proposition 5.5. The bilinear forms φk,k ∈ Λ2, for the cellular algebra RȞ
(k)
W of

Proposition 5.3 are given in the basis (Ck

1 , C
k

2 )× (Ck

1 , C
k

2 ) by
(

∏

k′ 6≤k

(σ2
k
− σ2

k′)
)

(

[2]k σk

σk [2]k

)

. (49)

Proof. By (48), the action of P(k)
2 (P(k)

12 )j on Mk in the basis (Ck

1 , C
k

2 ) is given by
(

0 0

σ2j+1
k

[2]kσ2j
k

)

.

It follows that Ck

22C
k

21 = [2]k
∏

k′ 6≤k
(σ2

k
− σ2

k′)Ck

21 mod H<k, which accounts for the (2, 2)

entry of the matrix in (49). The other entries are computed similarly. �

Now suppose that R is a field. Let rad(Mλ) = {x ∈ Mλ : φλ(x, y) = 0 for all y ∈ Mλ}.
Define Λ′ = {λ ∈ Λ : φλ 6= 0}.
Proposition 5.6 (Graham-Lehrer [12]). Maintain the notation of the general setup of
Definition 5.1. Let λ ∈ Λ. Then

(i) rad(Mλ) is an H-submodule of Mλ.

(ii) If φλ 6= 0, the quotient Lλ := Mλ/ rad(Mλ) is absolutely irreducible.

(iii) If φλ 6= 0, rad(Mλ) is the minimal submodule of Mλ with semisimple quotient.
(iv) The set {Lλ : λ ∈ Λ′} is a complete set of absolutely irreducible H-modules.

Definition 5.7. The decomposition matrix of a cellular algebraH is the matrix (dλµ)λ∈Λ, µ∈Λ′ ,
where dλµ is the multiplicity of Lµ in Mλ.

We next compute the decomposition matrix of the specialization Ȟ
(k)
W |u=1. For k ∈ Λ2,

the residue of k, denoted r(k), is the unique integer in
{

{tm+ α
∑n

j=1 jkj : t ∈ Z, α ∈ {1,−1}} ∩ {0, 1, . . . , ⌈m−1
2

⌉} if k ∈ SCompn,≤k,

{tm+ m
2
+ α

∑n

j=1 jk
1
j : t ∈ Z, α ∈ {1,−1}} ∩ {0, 1, . . . , ⌈m−1

2
⌉} if k1 ∈ SComp1

n,<k.

It is convenient to define r(ǫ̌+) = r(ǫ̌−) = 0 and r(ǫ̌1) = r(ǫ̌2) =
m
2
.

Proposition 5.8. Maintain the notation of Proposition 5.3. Suppose that m is odd, Λ2

is totally ordered, and R = C with A∗ → R given by u 7→ 1. Then for any λ ∈ Λ,

φλ has rank



















2 if λ is the maximal element of Λ with its residue and r(λ) 6= 0,

1 if λ is the maximal element of Λ2 with residue 0,

1 if λ = ǫ̌−,

0 otherwise.

The decomposition matrix of Ȟ
(k)
W |u=1 is given by

dλµ =

{

1 if r(λ) = r(µ) and {λ, µ} 6= {ǫ̌+, ǫ̌−},
0 otherwise.

Proof. This follows from the computation of ak|u=1, a
1
k
|u=1 in (32), Proposition 5.5, (48),

and (15). In the case φk has rank 1 (k ∈ Λ2), a direct computation shows that Mk has
ǫ̌− as an irreducible submodule with quotient Lk = ǫ̌+. �
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Remark 5.9. Proposition 5.8 does not apply to the u = 1 specialization if m is even
because σk|u=1 can be 0. It is not difficult to modify the cellular basis to obtain a result
similar to Proposition 5.8, which we do below. This will show that the conclusions of
cellular algebra theory do indeed not hold in this case, so the assumptions of Proposition
5.8 are necessary, not an artifact of our choice of basis.

Proposition 5.10. Suppose that m is even and otherwise maintain the setup of Propo-
sition 5.8. Let C′ be the same as C in (46) with the following modifications

C ′k
11 := P(k)

1

∏

k′ 6≤k
(P(k)

21 − σ2
k′),

C ′k
22 := P(k)

2

∏

k′ 6≤k
(P(k)

12 − σ2
k′).

Then C′ is a free R-basis of H = RȞ
(k)
W . Let Mj = X̌(1)(wj) as in Theorem 4.1. Then

the left-representation afforded by {C ′k
11, C

′k
21}











is isomorphic to Mr(k)|u=1 if r(k) ∈ [n],

has a submodule isomorphic to ǫ̌− with quotient ǫ̌+ if r(k) = 0

has a submodule isomorphic to ǫ̌2 with quotient ǫ̌1 if r(k) = m
2
.

While the left-representation afforded by {C ′k
22, C

′k
12}











is isomorphic to Mr(k)|u=1 if r(k) ∈ [n],

has a submodule isomorphic to ǫ̌− with quotient ǫ̌+ if r(k) = 0,

has a submodule isomorphic to ǫ̌1 with quotient ǫ̌2 if r(k) = m
2
.

Proof. The proof is similar to that of Propositions 5.3 and 5.8. �

Corollary 5.11. The maximal semisimple quotient Ȟ
(k)
W |u=1/ rad(Ȟ

(k)
W |u=1) is isomor-

phic to CW .
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