Numerical Analysis

Grinshpan

POSITIVE DEFINITE AND POSITIVE SEMIDEFINITE MATRICES

Let A be a matrix with real entries. We say that A is positive semidefinite
if, for any vector x with real components, the dot product of Ax and x is
nonnegative,

(Az,x) > 0.

In geometric terms, the condition of positive semidefiniteness says that, for
every x, the angle between x and Ax does not exceed 3 . Indeed,
(Az,x) = ||Az|| ||x|| cos® and so cosf > 0.

EXAMPLE 1. Let A= (}9). Then Az = (4, ), (Az,z) = 2% + 223 > 0
implying that A is positive semidefinite.

EXAMPLE 2. Let A= (11). Then Az = (%11%2) and

r1+T2

(Az,z) = (z1 + 22)? > 0 implying that A is positive semidefinite.

EXAMPLE 3. Let A= (1, %). Then Az = (%% ) and

—2z1+x2
(Az,z) = 22 + 23 > 0 implying that A is positive semidefinite.

EXAMPLE 4. Let A= (% % ). Then (Az,z) = 2% — 23 is not
nonnegative for |z1| < |z2|. Hence A is not positive semidefinite.

A symmetric matrix is positive semidefinite if and only if its eigenvalues
are nonnegative.

EXERCISE. Show that if A is positive semidefinite then every diagonal
entry of A must be nonnegative.

A real matrix A is said to be positive definite if
(Az,z) > 0,

unless z is the zero vector. Examples 1 and 3 are examples of positive
definite matrices. The matrix in Example 2 is not positive definite because
(Az,z) can be 0 for nonzero z (e.g., for z = (3?)). A symmetric matrix is
positive definite if and only if its eigenvalues are positive.
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THE CHOLESKY DECOMPOSITION

Theorem. Every symmetric positive definite matrix A has a unique
factorization of the form

A= LI

where L is a lower triangular matrix with positive diagonal entries.
L is called the (lower) Cholesky factor of A.
We will use induction on n, the size of A, to prove the theorem.

Case n =1 is trivial: A = (a), a > 0, and L = (y/a). There is only one way
to write a as a product of two equal positive numbers.

Case n = 2 is the heart of the matter. Let A = (‘g Cbl) be positive definite
and form a 2 x 2 matrix L = (}2). Then the equation

LIt = (i\g) (b\g) = <)‘2 ~ ) = A is equivalent to

Az z?+42
N =a
Az =1b
z? + 6% =d.

Solving for A, z, and §,
A= Va
z=\""b
§=/d— 2,

we obtain the desired lower triangular L. But why are a and d — 2
positive? This is a consequence of positive definiteness:

((55)(6), ()N =A((%).(§)=a>0
<(%3) (fa) ’ (fa)> = <(b28ad) ) (,ba)> :a2(d—$2) > 0.

This justifies the construction.
We need a lemma generalizing the preceding calculation.
Lemma. Let @ be nonsingular, x be a column vector, d be a number, and
let A= ((%gf %m) be positive definite. Then ||z|* < d.
Proof. Let u = <Q__I’”> ! Then Au = (”ngfd) because
QR'Q™'r —Qr=Qr—Qz =0
(Q2)'Q 7'z = 2'Q'Q7"w = 'z = |||

let is the inverse transpose of Q, Q7' = (Q")™' = (Q™1)".



Consequently (Au,u) = —||z||*> +d > 0. O
Back to the theorem.
Induction.

Assume that the theorem holds for all matrices of size m x m. The
induction step from n = m to n = m + 1 is analogous to the case of n = 2.

Let A = ( é g), where A is the m x m principal submatrix of A, b is the

m-vector (@i m+1), and d = Gpm41,m+1. By the inductive hypothesis, there
exists a unique m x m lower triangular matrix @ with positive diagonal
entries (hence nonsingular) such that QQ! = A.

Form an (m + 1) x (m + 1) lower triangular matrix L = <f¢ g) Then the
equation LL' = (Q 0) (Qt x) = < Qe Qo ) = A is equivalent to

zt § 06 (Qz)t ||z||2+62
QQ' = A
Qr=0>
|z)|? + 6% =d.
Letting
r=Q '
§=+/d—|z|? (6 exists by Lemma)
we obtain the desired lower triangular L. O

The inductive construction of the proof can be turned into an algorithm.

41-1
Example. A = ( 121 ) is a symmetric positive definite matrix.

Retracing the computation of the proof, we can find its lower Cholesky
factor:

2 0 0 Y
200 1 V7
L:(**()): 1vig)=1]2 2 0
* %k % 2 2 1 5 \/E

Certainly, A is positive semidefinite whenever A = LL!. Cholesky factors
for a positive semidefinite matrix always exist with a nonnegative diagonal.
However they may not be unique.

Zero matrix has a unique Cholesky decomposition. (J9) has infinitely
many Cholesky decompositions:

0 0\ 0 0 0 sinf
0 1) \sin® cos®) \0 cosf)"

neral, a triangular factorization does not always exist. For instance,

ge
§) cannot be written as a product of two triangular matrices.
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