POSITIVE DEFINITE AND POSITIVE SEMIDEFINITE MATRICES

Let A be a matrix with real entries. We say that A is positive semidefinite if, for any vector x with real components, the dot product of Ax and x is nonnegative,

$$\langle Ax, x \rangle \ge 0.$$

In geometric terms, the condition of positive semidefiniteness says that, for every x, the angle between x and Ax does not exceed $\frac{\pi}{2}$. Indeed, $\langle Ax, x \rangle = ||Ax|| \, ||x|| \, \cos \theta$ and so $\cos \theta \geq 0$.

EXAMPLE 1. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. Then $Ax = \begin{pmatrix} x_1 \\ 2x_2 \end{pmatrix}$, $\langle Ax, x \rangle = x_1^2 + 2x_2^2 \ge 0$ implying that A is positive semidefinite.

EXAMPLE 2. Let $A=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Then $Ax=\begin{pmatrix} x_1+x_2 \\ x_1+x_2 \end{pmatrix}$ and $\langle Ax, x \rangle = (x_1+x_2)^2 \geq 0$ implying that A is positive semidefinite.

EXAMPLE 3. Let $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$. Then $Ax = \begin{pmatrix} x_1 + 2x_2 \\ -2x_1 + x_2 \end{pmatrix}$ and $\langle Ax, x \rangle = x_1^2 + x_2^2 \geq 0$ implying that A is positive semidefinite.

EXAMPLE 4. Let $A = \begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix}$. Then $\langle Ax, x \rangle = x_1^2 - x_2^2$ is not nonnegative for $|x_1| < |x_2|$. Hence A is not positive semidefinite.

A symmetric matrix is positive semidefinite if and only if its eigenvalues are nonnegative.

EXERCISE. Show that if A is positive semidefinite then every diagonal entry of A must be nonnegative.

A real matrix A is said to be positive definite if

$$\langle Ax, x \rangle > 0$$
.

unless x is the zero vector. Examples 1 and 3 are examples of positive definite matrices. The matrix in Example 2 is not positive definite because $\langle Ax, x \rangle$ can be 0 for nonzero x (e.g., for $x = \binom{-3}{3}$). A symmetric matrix is positive definite if and only if its eigenvalues are positive.

THE CHOLESKY DECOMPOSITION

<u>Theorem</u>. Every symmetric positive definite matrix A has a unique factorization of the form

$$A = LL^t$$

where L is a lower triangular matrix with positive diagonal entries.

L is called the (lower) Cholesky factor of A.

We will use induction on n, the size of A, to prove the theorem.

Case n = 1 is trivial: A = (a), a > 0, and $L = (\sqrt{a})$. There is only one way to write a as a product of two equal positive numbers.

Case n=2 is the heart of the matter. Let $A=\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ be positive definite and form a 2×2 matrix $L=\begin{pmatrix} \lambda & 0 \\ x & \delta \end{pmatrix}$. Then the equation

and form a
$$2 \times 2$$
 matrix $L = \begin{pmatrix} \lambda & 0 \\ x & \delta \end{pmatrix}$. Then the equation $LL^t = \begin{pmatrix} \lambda & 0 \\ x & \delta \end{pmatrix} \begin{pmatrix} \lambda & x \\ 0 & \delta \end{pmatrix} = \begin{pmatrix} \lambda^2 & \lambda x \\ \lambda x & x^2 + \delta^2 \end{pmatrix} = A$ is equivalent to
$$\lambda^2 = a$$
$$\lambda x = b$$
$$x^2 + \delta^2 = d.$$

Solving for λ , x, and δ ,

$$\lambda = \sqrt{a}$$

$$x = \lambda^{-1}b$$

$$\delta = \sqrt{d - x^2}$$

we obtain the desired lower triangular L. But why are a and $d-x^2$ positive? This is a consequence of positive definiteness:

$$\left\langle \begin{pmatrix} a & b \\ b & d \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle = a > 0$$

$$\left\langle \begin{pmatrix} a & b \\ b & d \end{pmatrix}, \begin{pmatrix} b \\ -a \end{pmatrix}, \begin{pmatrix} b \\ -a \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} b \\ b^2 - ad \end{pmatrix}, \begin{pmatrix} b \\ -a \end{pmatrix} \right\rangle = a^2(d - x^2) > 0.$$

This justifies the construction.

We need a lemma generalizing the preceding calculation.

<u>Lemma</u>. Let Q be nonsingular, x be a column vector, d be a number, and let $A = \begin{pmatrix} QQ^t & Qx \\ (Qx)^t & d \end{pmatrix}$ be positive definite. Then $||x||^2 < d$.

Proof. Let
$$u=\begin{pmatrix}Q^{-t}x\\-1\end{pmatrix}$$
. ¹ Then $Au=\begin{pmatrix}0\\\|x\|^2-d\end{pmatrix}$ because
$$QQ^tQ^{-t}x-Qx=Qx-Qx=0$$

$$(Qx)^tQ^{-t}x=x^tQ^tQ^{-t}x=x^tx=\|x\|^2.$$

 $[\]overline{{}^{1}Q^{-t}}$ is the inverse transpose of $Q, Q^{-t} = (Q^{t})^{-1} = (Q^{-1})^{t}$.

Consequently $\langle Au, u \rangle = -\|x\|^2 + d > 0$.

Back to the theorem.

Induction.

Assume that the theorem holds for all matrices of size $m \times m$. The induction step from n=m to n=m+1 is analogous to the case of n=2. Let $A=\begin{pmatrix} \tilde{A} & b \\ b^t & d \end{pmatrix}$, where \tilde{A} is the $m \times m$ principal submatrix of A, b is the m-vector $(a_{i,m+1})$, and $d=a_{m+1,m+1}$. By the inductive hypothesis, there exists a unique $m \times m$ lower triangular matrix Q with positive diagonal entries (hence nonsingular) such that $QQ^t=\tilde{A}$.

Form an $(m+1)\times(m+1)$ lower triangular matrix $L=\begin{pmatrix}Q&0\\x^t&\delta\end{pmatrix}$. Then the equation $LL^t=\begin{pmatrix}Q&0\\x^t&\delta\end{pmatrix}\begin{pmatrix}Q^t&x\\0&\delta\end{pmatrix}=\begin{pmatrix}QQ^t&Qx\\(Qx)^t&\|x\|^2+\delta^2\end{pmatrix}=A$ is equivalent to $QQ^t=\tilde{A}$ Qx=b $\|x\|^2+\delta^2=d.$

Letting

$$x = Q^{-1}b$$

 $\delta = \sqrt{d - ||x||^2}$ (δ exists by Lemma)

we obtain the desired lower triangular L.

The inductive construction of the proof can be turned into an algorithm.

Example. $A = \begin{pmatrix} 4 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$ is a symmetric positive definite matrix. Retracing the computation of the proof, we can find its lower Cholesky factor:

$$L = \begin{pmatrix} 2 & 0 & 0 \\ * & * & 0 \\ * & * & * \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ \frac{1}{2} & \frac{\sqrt{7}}{2} & 0 \\ * & * & * \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ \frac{1}{2} & \frac{\sqrt{7}}{2} & 0 \\ -\frac{1}{2} & \frac{5}{2\sqrt{7}} & \sqrt{\frac{6}{7}} \end{pmatrix}.$$

Certainly, A is positive semidefinite whenever $A = LL^t$. Cholesky factors for a positive semidefinite matrix always exist with a nonnegative diagonal. However they may not be unique.

Zero matrix has a unique Cholesky decomposition. $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ has infinitely many Cholesky decompositions:

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 0 & \sin \theta \\ 0 & \cos \theta \end{pmatrix}.$$

In general, a triangular factorization does not always exist. For instance, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ cannot be written as a product of two triangular matrices.