Let a random variable \(X \) be uniformly distributed in the interval \(0 < x < \theta \).

Consider two simple hypotheses, based on a single observation of \(X \),

\[H_0 : \quad \theta = 1 \quad \text{and} \quad H_1 : \quad \theta = 1.1. \]

The likelihood ratio function is

\[\ell(x) = \frac{P(X = x | H_0)}{P(X = x | H_1)} = \frac{f_0(x)}{f_1(x)} = \begin{cases} 1.1, & 0 < x < 1, \\ 0, & 1 \leq x < 1.1. \end{cases} \]

Note that \(\ell(x) \) is a decreasing step function defined on \((0, 1.1) \) with range \(\{0, 1.1\} \).

Under \(H_0 \), it is impossible to observe an \(x \) in \([1, 1.1) \); under \(H_1 \), this chance is \(1/11 \).

Given a critical value \(c \), the likelihood ratio test is

\[\ell(x) < c : \quad \text{reject} \ H_0 \]
\[\ell(x) = c : \quad \text{reject} \ H_0 \quad \text{with probability} \ q \]
\[\ell(x) > c : \quad \text{accept} \ H_0 \]

The borderline probability of rejection \(q \) may depend on \(x \) (and on \(c \)).

For any \(c \) with \(0 < c < 1.1 \), the significance level of the test is

\[\alpha = P(\ell(X) < c \mid \theta = 1) = 0, \]

and the power of the test is \(1 - \beta = P(H_1 \mid \theta = 1) = P(\ell(X) < c \mid \theta = 1.1) = 1/11 \).

Thus the odds of rejection when \(H_0 \) is true are zero, but the odds of acceptance when \(H_0 \) is false are high.

The cases where \(c \) belongs to the range of \(\ell(x) \) are more delicate.

If \(c = 0 \), we have \(\alpha = P(\ell(X) = 0 \mid \theta = 1) = 0 \) and \(1 - \beta = P(H_1 \mid \theta = 1.1) = 10/11 \int_0^{1.1} q(x)dx \).

If \(c = 1.1 \), we have \(\alpha = P(H_1 \mid \theta = 1) = \int_0^1 q(x)dx \) and \(1 - \beta = P(H_1 \mid \theta = 1.1) = 10/11 \int_0^1 q(x)dx + 1/11 \).

For instance, if \(c = 1.1 \) and \(q(x) = 0.5 \), then \(\alpha = 0.5 \) and \(1 - \beta = 6/11 \).