Lecture 4 - The Gradient Method

Objective: find an optimal solution of the problem

\[
\min\{f(x) : x \in \mathbb{R}^n\}.
\]

The iterative algorithms that we will consider are of the form

\[
x_{k+1} = x_k + t_k d_k, \quad k = 0, 1, \ldots
\]

- \(d_k\) - direction.
- \(t_k\) - stepsize.

We will limit ourselves to descent directions.

Definition. Let \(f : \mathbb{R}^n \to \mathbb{R}\) be a continuously differentiable function over \(\mathbb{R}^n\). A vector \(0 \neq d \in \mathbb{R}^n\) is called a descent direction of \(f\) at \(x\) if the directional derivative \(f'(x; d)\) is negative, meaning that

\[
f'(x; d) = \nabla f(x)^T d < 0.
\]
Lemma: Let \(f \) be a continuously differentiable function over \(\mathbb{R}^n \), and let \(x \in \mathbb{R}^n \). Suppose that \(d \) is a descent direction of \(f \) at \(x \). Then there exists \(\varepsilon > 0 \) such that

\[
f(x + td) < f(x)
\]

for any \(t \in (0, \varepsilon] \).

Proof.

\(\triangleright \) Since \(f'(x; d) < 0 \), it follows from the definition of the directional derivative that

\[
\lim_{t \to 0^+} \frac{f(x + td) - f(x)}{t} = f'(x; d) < 0.
\]

\(\triangleright \) Therefore, \(\exists \varepsilon > 0 \) such that

\[
\frac{f(x + td) - f(x)}{t} < 0
\]

for any \(t \in (0, \varepsilon] \), which readily implies the desired result.

See Lemma 4.3 for a stronger version of this result.
Schematic Descent Direction Method

Initialization: pick $x_0 \in \mathbb{R}^n$ arbitrarily.

General step: for any $k = 0, 1, 2, \ldots$ set

(a) pick a descent direction d_k.
(b) find a stepsize t_k satisfying $f(x_k + t_k d_k) < f(x_k)$.
(c) set $x_{k+1} = x_k + t_k d_k$.
(d) if a stopping criteria is satisfied, then STOP and x_{k+1} is the output.

Of course, many details are missing in the above schematic algorithm:

- What is the starting point?
- How to choose the descent direction?
- What stepsize should be taken?
- What is the stopping criteria?
Stepsize Selection Rules

- **constant stepsize** - $t_k = \bar{t}$ for any k.
- **exact stepsize** - t_k is a minimizer of f along the ray $x_k + t d_k$:
 \[t_k \in \arg\min_{t \geq 0} f(x_k + t d_k). \]

- **backtracking**\(^1\) - The method requires three parameters: $s > 0$, $\alpha \in (0, 1)$, $\beta \in (0, 1)$. Here we start with an initial stepsize $t_k = s$. While
 \[f(x_k) - f(x_k + t_k d_k) < -\alpha t_k \nabla f(x_k)^T d_k. \]
 set $t_k := \beta t_k$

Sufficient Decrease Property:

\[f(x_k) - f(x_k + t_k d_k) \geq -\alpha t_k \nabla f(x_k)^T d_k. \]

\(^1\)also referred to as Armijo

How do you know it will terminate? Ans: Lemma 4.3
Exact Line Search for Quadratic Functions

\[f(x) = x^T Ax + 2b^T x + c \]

where \(A \) is an \(n \times n \) positive definite matrix, \(b \in \mathbb{R}^n \) and \(c \in \mathbb{R} \). Let \(x \in \mathbb{R}^n \) and let \(d \in \mathbb{R}^n \) be a descent direction of \(f \) at \(x \). The objective is to find a solution to

\[
\min_{t \geq 0} f(x + td).
\]

In class
The Gradient Method - Taking the Direction of Minus the Gradient

▶ In the gradient method $d_k = -\nabla f(x_k)$.
▶ This is a descent direction as long as $\nabla f(x^k) \neq 0$ since

$$f'(x_k; -\nabla f(x_k)) = -\nabla f(x_k)^T \nabla f(x_k) = -\|\nabla f(x_k)\|^2 < 0.$$

▶ In addition for being a descent direction, minus the gradient is also the steepest direction method.

Lemma: Let f be a continuously differentiable function and let $x \in \mathbb{R}^n$ be a non-stationary point ($\nabla f(x) \neq 0$). Then an optimal solution of

$$\min_d \{f'(x; d) : \|d\| = 1\} \quad (1)$$

is $d = -\nabla f(x)/\|\nabla f(x)\|$.

Proof. In class
The Gradient Method

Input: $\varepsilon > 0$ - tolerance parameter.

Initialization: pick $x_0 \in \mathbb{R}^n$ arbitrarily.

General step: for any $k = 0, 1, 2, \ldots$ execute the following steps:

(a) pick a stepsize t_k by a line search procedure on the function

$$g(t) = f(x_k - t \nabla f(x_k)).$$

(b) set $x_{k+1} = x_k - t_k \nabla f(x_k)$.

(c) if $\|\nabla f(x_{k+1})\| \leq \varepsilon$, then STOP and x_{k+1} is the output.
Numerical Example

\[\min x^2 + 2y^2 \]

\[x_0 = (2; 1), \varepsilon = 10^{-5}, \text{exact line search.} \]

13 iterations until convergence.
The Zig-Zag Effect

Lemma. Let \(\{x_k\}_{k \geq 0} \) be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function \(f \). Then for any \(k = 0, 1, 2, \ldots \)

\[
(x_{k+2} - x_{k+1})^T (x_{k+1} - x_k) = 0.
\]

Proof.

- \(x_{k+1} - x_k = -t_k \nabla f(x_k), x_{k+2} - x_{k+1} = -t_{k+1} \nabla f(x_{k+1}). \)
- Therefore, we need to prove that \(\nabla f(x_k)^T \nabla f(x_{k+1}) = 0. \)
- \(t_k \in \arg\min_{t \geq 0} \{g(t) \equiv f(x_k - t \nabla f(x_k))\} \)
- Hence, \(g'(t_k) = 0. \)
- \(-\nabla f(x_k)^T \nabla f(x_k - t_k \nabla f(x_k)) = 0. \)
- \(\nabla f(x_k)^T \nabla f(x_{k+1}) = 0. \)
Numerical Example - Constant Stepsize, $\bar{t} = 0.1$

$$\min x^2 + 2y^2$$

$x_0 = (2; 1), \varepsilon = 10^{-5}, \bar{t} = 0.1.$

iter_number = 1 norm_grad = 4.000000 fun_val = 3.280000
iter_number = 2 norm_grad = 2.937210 fun_val = 1.897600
iter_number = 3 norm_grad = 2.222791 fun_val = 1.141888

: : :

iter_number = 56 norm_grad = 0.000015 fun_val = 0.000000
iter_number = 57 norm_grad = 0.000012 fun_val = 0.000000
iter_number = 58 norm_grad = 0.000010 fun_val = 0.000000

Quite a lot of iterations...

Q: what is the problem here?
Numerical Example - Constant Stepsize, $\bar{t} = 10$

\[\min x^2 + 2y^2 \]

\[x_0 = (2; 1), \epsilon = 10^{-5}, \bar{t} = 10 \ldots \]

<table>
<thead>
<tr>
<th>iter_number</th>
<th>norm_grad</th>
<th>fun_val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1783.488716</td>
<td>476806.000000</td>
</tr>
<tr>
<td>2</td>
<td>656209.693339</td>
<td>56962873606.0000</td>
</tr>
<tr>
<td>3</td>
<td>256032703.004797</td>
<td>8318300807190406.0000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>119</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

The sequence diverges:(

Important question: how can we choose the constant stepsize so that convergence is guaranteed?

See HW 1
Lipschitz Continuity of the Gradient

Definition Let f be a continuously differentiable function over \mathbb{R}^n. We say that f has a **Lipschitz gradient** if there exists $L \geq 0$ for which

$$\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\| \text{ for any } x, y \in \mathbb{R}^n.$$

L is called the **Lipschitz constant**.

- If ∇f is Lipschitz with constant L, then it is also Lipschitz with constant \tilde{L} for all $\tilde{L} \geq L$.
- The class of functions with Lipschitz gradient with constant L is denoted by $C^{1,1}_L(\mathbb{R}^n)$ or just $C^{1,1}_L$.
- **Linear functions** - Given $a \in \mathbb{R}^n$, the function $f(x) = a^T x$ is in $C^{1,1}_0$.
- **Quadratic functions** - Let A be a symmetric $n \times n$ matrix, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then the function $f(x) = x^T Ax + 2b^T x + c$ is a $C^{1,1}$ function. The smallest Lipschitz constant of ∇f is $2\|A\|_2$ – why? In class
Equivalence to Boundedness of the Hessian

Theorem. Let f be a twice continuously differentiable function over \mathbb{R}^n. Then the following two claims are equivalent:

1. $f \in C^{1,1}_L(\mathbb{R}^n)$.
2. $\|\nabla^2 f(x)\| \leq L$ for any $x \in \mathbb{R}^n$.

Proof on pages 73, 74 of the book

Example: $f(x) = \sqrt{1 + x^2} \in C^{1,1}$

In class

Use this result for HW1, Problem 1(i).
Convergence of the Gradient Method

Theorem. Let \(\{x_k\}_{k \geq 0} \) be the sequence generated by GM for solving

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

with one of the following stepsize strategies:

- constant stepsize \(\bar{t} \in (0, \frac{2}{L}) \).
- exact line search.
- backtracking procedure with parameters \(s > 0 \) and \(\alpha, \beta \in (0, 1) \).

Assume that

- \(f \in C_{L}^{1,1}(\mathbb{R}^n) \).
- \(f \) is bounded below over \(\mathbb{R}^n \), that is, there exists \(m \in \mathbb{R} \) such that \(f(x) > m \) for all \(x \in \mathbb{R}^n \).

Then

1. for any \(k \), \(f(x_{k+1}) < f(x_k) \) unless \(\nabla f(x_k) = 0 \).
2. \(\nabla f(x_k) \to 0 \) as \(k \to \infty \).

Theorem 4.25 in the book.
Two Numerical Examples - Backtracking

\[\min x^2 + 2y^2 \]

\[\mathbf{x}_0 = (2; 1), s = 2, \alpha = 0.25, \beta = 0.5, \varepsilon = 10^{-5}. \]

iter_number = 1 norm_grad = 2.000000 fun_val = 1.000000
iter_number = 2 norm_grad = 0.000000 fun_val = 0.000000

- fast convergence (also due to lack!)
- no real advantage to exact line search.

ANOTHER EXAMPLE:
\[\min 0.01x^2 + y^2, s = 2, \alpha = 0.25, \beta = 0.5, \varepsilon = 10^{-5}. \]

iter_number = 1 norm_grad = 0.028003 fun_val = 0.009704
iter_number = 2 norm_grad = 0.027730 fun_val = 0.009324
iter_number = 3 norm_grad = 0.027465 fun_val = 0.008958
\vdots
iter_number = 201 norm_grad = 0.000010 fun_val = 0.000000

Important Question: Can we detect key properties of the objective function that imply slow/fast convergence?
Kantorovich Inequality

Lemma. Let A be a positive definite $n \times n$ matrix. Then for any $0 \neq x \in \mathbb{R}^n$ the inequality

$$
\frac{x^T x}{(x^T Ax)(x^T A^{-1} x)} \geq \frac{4\lambda_{\max}(A)\lambda_{\min}(A)}{\left(\lambda_{\max}(A) + \lambda_{\min}(A)\right)^2}
$$

holds.

Proof.

- Denote $m = \lambda_{\min}(A)$ and $M = \lambda_{\max}(A)$.
- The eigenvalues of the matrix $A + MmA^{-1}$ are $\lambda_i(A) + \frac{Mm}{\lambda_i(A)}$.
- The maximum of the 1-D function $\varphi(t) = t + \frac{Mm}{t}$ over $[m, M]$ is attained at the endpoints m and M with a corresponding value of $M + m$.
- Thus, the eigenvalues of $A + MmA^{-1}$ are smaller than $(M + m)$.
- $A + MmA^{-1} \preceq (M + m)I$.
- $x^T Ax + Mm(x^T A^{-1} x) \leq (M + m)(x^T x)$,
- Therefore,

$$
(x^T Ax)[Mm(x^T A^{-1} x)] \leq \frac{1}{4} \left[(x^T Ax) + Mm(x^T A^{-1} x)\right]^2 \leq \frac{(M + m)^2}{4}(x^T x)^2,
$$
Gradient Method for Minimizing $x^T Ax$

Theorem. Let $\{x_k\}_{k \geq 0}$ be the sequence generated by the gradient method with exact linesearch for solving the problem

$$
\min_{x \in \mathbb{R}^n} x^T Ax \quad (A \succ 0).
$$

Then for any $k = 0, 1, \ldots$:

$$
f(x_{k+1}) \leq \left(\frac{M - m}{M + m} \right)^2 f(x_k),
$$

where $M = \lambda_{\text{max}}(A), m = \lambda_{\text{min}}(A)$.

Proof.

$$
x_{k+1} = x_k - t_k d_k,
$$

where $t_k = \frac{d_k^T d_k}{2d_k^T Ad_k}, d_k = 2Ax_k$.

Don't we lose too much generality just to consider $f(x) = x^T A x$? (Take HW1 seriously and you may answer this question.)

What about constant step size? (Also in HW1)
Proof of Rate of Convergence Contd.

\[f(x_{k+1}) = x_{k+1}^T A x_{k+1} = (x_k - t_k d_k)^T A (x_k - t_k d_k) \]
\[= x_k^T A x_k - 2 t_k d_k^T A x_k + t_k^2 d_k^T A d_k \]
\[= x_k^T A x_k - t_k d_k^T d_k + t_k^2 d_k^T A d_k. \]

Plugging in the expression for \(t_k \)

\[f(x_{k+1}) = x_k^T A x_k - \frac{1}{4} \frac{(d_k^T d_k)^2}{d_k^T A d_k} \]
\[= x_k^T A x_k \left(1 - \frac{1}{4} \frac{(d_k^T d_k)^2}{(d_k^T A d_k)(d_k^T A^{-1} A x_k)} \right) \]
\[= \left(1 - \frac{(d_k^T d_k)^2}{(d_k^T A d_k)(d_k^T A^{-1} d_k)} \right) f(x_k). \]

By Kantorovich:

\[f(x_{k+1}) \leq \left(1 - \frac{4 Mm}{(M + m)^2} \right) f(x_k) = \left(\frac{M - m}{M + m} \right)^2 f(x_k) = \left(\frac{\kappa(A) - 1}{\kappa(A) + 1} \right)^2 f(x_k), \]
The Condition Number

Definition. Let \mathbf{A} be an $n \times n$ positive definite matrix. Then the condition number of \mathbf{A} is defined by

$$
\kappa(\mathbf{A}) = \frac{\lambda_{\text{max}}(\mathbf{A})}{\lambda_{\text{min}}(\mathbf{A})}.
$$

- Matrices (or quadratic functions) with large condition number are called **ill-conditioned**.
- Matrices with small condition number are called **well-conditioned**.
- A **large** condition number implies a **large** number of iterations of the gradient method.
- A **small** condition number implies a **small** number of iterations of the gradient method.
- For a non-quadratic function, the asymptotic rate of convergence of \mathbf{x}_k to a stationary point \mathbf{x}^* is usually determined by the condition number of $\nabla^2 f(\mathbf{x}^*)$.
A Severely Ill-Condition Function - Rosenbrock

\[
\min \left\{ f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2 \right\}.
\]

- optimal solution: \((x_1, x_2) = (1, 1)\), optimal value: 0.

\[
\nabla f(x) = \begin{pmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{pmatrix},
\]

\[
\nabla^2 f(x) = \begin{pmatrix} -400x_2 + 1200x_1^2 + 2 & -400x_1 \\ -400x_1 & 200 \end{pmatrix}.
\]

\[
\nabla^2 f(1, 1) = \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix}
\]

condition number: 2508
Solution of the Rosenbrock Problem with the Gradient Method

\(\mathbf{x}_0 = (2; 5), s = 2, \alpha = 0.25, \beta = 0.5, \varepsilon = 10^{-5} \), backtracking stepsize selection.

6890(!!!) iterations.
Sensitivity of Solutions to Linear Systems

- Suppose that we are given the linear system

\[Ax = b \]

where \(A \succ 0 \) and we assume that \(x \) is indeed the solution of the system \((x = A^{-1}b) \).
- Suppose that the right-hand side is perturbed \(b + \Delta b \). What can be said on the solution of the new system \(x + \Delta x \)?
- \(\Delta x = A^{-1} \Delta b \).
- Result (derivation in class):

\[
\frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\Delta b\|}{\|b\|}
\]
Numerical Example

consider the ill-condition matrix:

$$A = \begin{pmatrix} 1 + 10^{-5} & 1 \\ 1 & 1 + 10^{-5} \end{pmatrix}$$

```matlab
>> A=[1+1e-5,1;1,1+1e-5];
>> cond(A)
ans =
    2.00000999998795e+005
```

We have

```matlab
>> A\[1;1]
ans =
    0.499997500018278
    0.49999750006722
```

However,

```matlab
>> A\[1.1;1]
ans =
    1.0e+003 *
    5.000524997400047
   -4.99475002650021
```
Scaled Gradient Method

Consider the minimization problem

$$(P) \quad \min\{f(x) : x \in \mathbb{R}^n\}.$$

For a given nonsingular matrix $S \in \mathbb{R}^{n \times n}$, we make the linear change of variables $x = Sy$, and obtain the equivalent problem

$$(P') \quad \min\{g(y) \equiv f(Sy) : y \in \mathbb{R}^n\}.$$

Since $\nabla g(y) = S^T \nabla f(Sy) = S^T \nabla f(x)$, the gradient method for (P') is

$$y_{k+1} = y_k - t_k S^T \nabla f(Sy_k).$$

Multiplying the latter equality by S from the left, and using the notation $x_k = Sy_k$:

$$x_{k+1} = x_k - t_k SS^T \nabla f(x_k).$$

Defining $D = SS^T$, we obtain the scaled gradient method:

$$x_{k+1} = x_k - t_k D \nabla f(x_k).$$
Scaled Gradient Method

- $D \succ 0$, so the direction $-D \nabla f(x_k)$ is a descent direction:

$$f'(x_k; -D \nabla f(x_k)) = -\nabla f(x_k)^T D \nabla f(x_k) < 0,$$

We also allow different scaling matrices at each iteration.

Scaled Gradient Method

Input: $\varepsilon > 0$ - tolerance parameter.

Initialization: pick $x_0 \in \mathbb{R}^n$ arbitrarily.

General step: for any $k = 0, 1, 2, \ldots$ execute the following steps:

(a) pick a scaling matrix $D_k \succ 0$.

(b) pick a stepsize t_k by a line search procedure on the function

$$g(t) = f(x_k - tD_k \nabla f(x_k)).$$

(c) set $x_{k+1} = x_k - t_k D_k \nabla f(x_k)$.

(c) if $\|\nabla f(x_{k+1})\| \leq \varepsilon$, then STOP and x_{k+1} is the output.
Choosing the Scaling Matrix D_k

- The scaled gradient method with scaling matrix D is equivalent to the gradient method employed on the function $g(y) = f(D^{1/2}y)$.
- Note that the gradient and Hessian of g are given by
 \[
 \nabla g(y) = D^{1/2}f(D^{1/2}y) = D^{1/2}f(x),
 \nabla^2 g(y) = D^{1/2}\nabla^2 f(D^{1/2}y)D^{1/2} = D^{1/2}\nabla^2 f(x)D^{1/2}.
 \]
- The objective is usually to pick D_k so as to make $D_k^{1/2}\nabla^2 f(x_k)D_k^{1/2}$ as well-conditioned as possible.
- A well known choice (Newton’s method): $D_k = (\nabla^2 f(x_k))^{-1}$. See HW2
- **diagonal scaling:** D_k is picked to be diagonal. For example,
 \[
 (D_k)_{ii} = \left(\frac{\partial^2 f(x_k)}{\partial x_i^2}\right)^{-1}.
 \]
- Diagonal scaling can be very effective when the decision variables are of different magnitudes.
The Gauss-Newton Method

- Nonlinear least squares problem:

\[
\text{(NLS): } \min_{x \in \mathbb{R}^n} \left\{ g(x) \equiv \sum_{i=1}^{m} (f_i(x) - c_i)^2 \right\}.
\]

\(f_1, \ldots, f_m\) are continuously differentiable over \(\mathbb{R}^n\) and \(c_1, \ldots, c_m \in \mathbb{R}\).

- Denote:

\[
F(x) = \begin{pmatrix}
f_1(x) - c_1 \\
f_2(x) - c_2 \\
\vdots \\
f_m(x) - c_m
\end{pmatrix},
\]

- Then the problem becomes:

\[
\min \|F(x)\|^2.
\]
The Gauss-Newton Method

Given the \(k \)th iterate \(x_k \), the next iterate is chosen to minimize the sum of squares of the linearized terms, that is,

\[
x_{k+1} = \arg\min_{x \in \mathbb{R}^n} \left\{ \sum_{i=1}^{m} \left[f_i(x_k) + \nabla f_i(x_k)^T (x - x_k) - c_i \right]^2 \right\}.
\]

▶ The general step actually consists of solving the linear LS problem

\[
\min \| A_k x - b_k \|^2,
\]

where

\[
A_k = \begin{pmatrix}
\nabla f_1(x_k)^T \\
\nabla f_2(x_k)^T \\
\vdots \\
\nabla f_m(x_k)^T
\end{pmatrix} = J(x_k)
\]

is the so-called Jacobian matrix, assumed to have full column rank.

\[
b_k = \begin{pmatrix}
\nabla f_1(x_k)^T x_k - f_1(x_k) + c_1 \\
\nabla f_2(x_k)^T x_k - f_2(x_k) + c_2 \\
\vdots \\
\nabla f_m(x_k)^T x_k - f_m(x_k) + c_m
\end{pmatrix} = J(x_k) x_k - F(x_k)
\]
The Gauss-Newton Method

The Gauss-Newton method can thus be written as:

\[x_{k+1} = (J(x_k)^T J(x_k))^{-1} J(x_k)^T b_k. \]

The gradient of the objective function \(f(x) = \|F(x)\|^2 \) is

\[\nabla f(x) = 2J(x)^T F(x) \]

The GN method can be rewritten as follows:

\[x_{k+1} = (J(x_k)^T J(x_k))^{-1} J(x_k)^T (J(x_k)x_k - F(x_k)) \]
\[= x_k - (J(x_k)^T J(x_k))^{-1} J(x_k)^T F(x_k) \]
\[= x_k - \frac{1}{2} (J(x_k)^T J(x_k))^{-1} \nabla f(x_k), \]

that is, it is a scaled gradient method with a special choice of scaling matrix:

\[D_k = \frac{1}{2} (J(x_k)^T J(x_k))^{-1}. \]
The Damped Gauss-Newton Method

The Gauss-Newton method does not incorporate a stepsize, which might cause it to diverge. A well known variation of the method incorporating stepsizes is the damped Gauss-newton Method.

Damped Gauss-Newton Method

Input: ε - tolerance parameter.

Initialization: pick $x_0 \in \mathbb{R}^n$ arbitrarily.

General step: for any $k = 0, 1, 2, \ldots$ execute the following steps:

(a) Set $d_k = -(J(x_k)^T J(x_k))^{-1} J(x_k)^T F(x_k)$.

(b) Set t_k by a line search procedure on the function

$$h(t) = g(x_k + t d_k).$$

(c) set $x_{k+1} = x_k + t_k d_k$.

(c) if $\|\nabla f(x_{k+1})\| \leq \varepsilon$, then STOP and x_{k+1} is the output.
Fermat-Weber Problem

Fermat-Weber Problem: Given \(m \) points in \(\mathbb{R}^n : a_1, \ldots, a_m \) – also called “anchor point” – and \(m \) weights \(\omega_1, \omega_2, \ldots, \omega_m > 0 \), find a point \(x \in \mathbb{R}^n \) that minimizes the weighted distance of \(x \) to each of the points \(a_1, \ldots, a_m \):

\[
\min_{x \in \mathbb{R}^n} \left\{ f(x) \equiv \sum_{i=1}^{m} \omega_i \|x - a_i\| \right\}.
\]

- The objective function is not differentiable at the anchor points \(a_1, \ldots, a_m \).
- One of the simplest instances of **facility location** problems.
Weiszfeld’s Method (1937)

- Start from the stationarity condition $\nabla f(x) = 0$.

$$\sum_{i=1}^{m} \omega_i \frac{x-a_i}{\|x-a_i\|} = 0.$$

$$\left(\sum_{i=1}^{m} \frac{\omega_i}{\|x-a_i\|}\right) x = \sum_{i=1}^{m} \frac{\omega_i a_i}{\|x-a_i\|},$$

$$x = \frac{1}{\sum_{i=1}^{m} \omega_i \|x-a_i\|} \sum_{i=1}^{m} \frac{\omega_i a_i}{\|x-a_i\|}.$$

- The stationarity condition can be written as $x = T(x)$, where T is the operator

$$T(x) \equiv \frac{1}{\sum_{i=1}^{m} \omega_i \|x-a_i\|} \sum_{i=1}^{m} \frac{\omega_i a_i}{\|x-a_i\|}.$$

- Weiszfeld’s method is a fixed point method:

$$x_{k+1} = T(x_k).$$

2We implicitly assume here that x is not an anchor point.
Weiszfeld’s Method as a Gradient Method

Weiszfeld’s Method
Initialization: pick \(x_0 \in \mathbb{R}^n \) such that \(x \neq a_1, a_2, \ldots, a_m \).
General step: for any \(k = 0, 1, 2, \ldots \) compute:

\[
x_{k+1} = T(x_k) = \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|x_k - a_i\|}} \sum_{i=1}^{m} \frac{\omega_i a_i}{\|x_k - a_i\|}.
\]

Weiszfeld’s method is a gradient method since

\[
x_{k+1} = \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|x_k - a_i\|}} \sum_{i=1}^{m} \frac{\omega_i a_i}{\|x_k - a_i\|} = x_k - \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|x_k - a_i\|}} \nabla f(x_k).
\]

A gradient method with a special choice of stepsize: \(t_k = \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|x_k - a_i\|}} \).